Skip to main content

Advertisement

Log in

Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bardant TB, Abimanyu H, Adriana N (2012) Effect of pretreatment technology on enzyme susceptibility in high substrate loading enzymatic hydrolysis of palm oil EFB and water hyacinth. Int J Environ Bioenerg 3:193–200

    Google Scholar 

  2. Daud WRW, Law K-N (2011) Review of oil palm fibers: oil palm fibers as papermaking material: potentials and challenges. Bioresources 6:901–917

    Google Scholar 

  3. Jung YH, Kim IJ, Han J-I, Choi I-G, Kim KH (2011) Aqueous ammonia pretreatment of oil palm empty fruit bunches for ethanol production. Bioresour Technol 102:9806–9809

    Article  CAS  Google Scholar 

  4. Millati R, Wikandari R, Trihandayani ET, Cahyanto MN, Taherzadeh MJ, Niklasson C (2011) Ethanol from oil palm empty fruit bunch via dilute-acid hydrolysis and fermentation by Mucor indicus and Saccharomyces cerevisiae. Agric J 6:54–59

    Article  CAS  Google Scholar 

  5. Alkhatib M, Abd RM, Alam MZ, Saleh HM (2011) Enzymatic hydrolysis of oil palm empty fruit bunch using immobilized cellulase enzyme. Afr J Biotechnol 10:18811–18815

    CAS  Google Scholar 

  6. Rozman HD, Ahmadhilmi KR, Abubakar A (2004) Polyurethane (PU)-oil palm empty fruit bunch (EFB) composites: the effect of EFBG reinforcement in mat form and isocyanate treatment on the mechanical properties. Polym Test 23:559–565

    Article  CAS  Google Scholar 

  7. Kim JS, Choi WI, Kang M, Park JY, Lee J-S (2012) Kinetic study of empty fruit bunch using hot liquid water and dilute acid. Appl Biochem Biotechnol 167:1527–1539

    Article  CAS  Google Scholar 

  8. Kim S, Park JM, Seo J-W, Kim CH (2012) Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233

    Article  CAS  Google Scholar 

  9. Shamsudin S, Shah UKM, Zainudin H, Abd-Aziz S, Kamal SMM, Shirai Y, Hassan MA (2012) Effect of steam pretreatment on oil palm empty fruit bunch for the production of sugars. Biomass Bioenerg 36:280–288

    Article  CAS  Google Scholar 

  10. Sudiyani Y, Sembiring KC, Hendarsyah H, Alawiyah S (2010) Alkaline pretreatment and enzymatic saccharification of oil palm empty fruit bunch fiber for ethanol production. Menara Perkebunan 78:70–74

    Google Scholar 

  11. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131

    Article  CAS  Google Scholar 

  12. Kootstra AMJ, Mosier NS, Scott EL, Beeftink HH, Sanders JPM (2009) Differential effects of mineral and organic acids on the kinetics of arabinose degradation under lignocellulose pretreatment conditions. Biochem Eng J 43:92–97

    Article  CAS  Google Scholar 

  13. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  14. Kim KH, Tucker M, Nguyen Q (2005) Conversion of bark-rich biomass mixture into fermentable sugar by two-stage dilute acid-catalyzed hydrolysis. Bioresour Technol 96:1249–1255

    Article  CAS  Google Scholar 

  15. Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  CAS  Google Scholar 

  16. Pallapolu VR, Lee YY, Garlock RJ, Balan V, Dale BE, Kim Y, Mosier NS, Ladisch MR, Falls M, Holtzapple MT, Sierra-Ramirez R, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE (2011) Effects of enzyme loading and β-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies. Bioresour Technol 102:11115–11120

    Article  CAS  Google Scholar 

  17. Sanda T, Hasunuma T, Matsuda F, Kondo A (2011) Repeated-batch fermentation of lignocellulosic hydrolysate to ethanol using a hybrid Saccharomyces cerevisiae strain metabolically engineered for tolerance to acetic and formic acids. Bioresour Technol 102:7917–7924

    Article  CAS  Google Scholar 

  18. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530

    Article  CAS  Google Scholar 

  19. Kim Y, Mosier NS, Ladisch MR, Pallapolu VR, Lee YY, Garlock R, Balan V, Dale BE, Donohoe BS, Vinzant TB, Elander RT, Falls M, Sierra R, Holtzapple MT, Shi J, Ebrik MA, Redmond T, Yang B, Wyman CE, Warner RE (2011) Comparative study on enzymatic digestibility of switchgrass varieties and harvests processed by leading pretreatment technologies. Bioresour Technol 102:11089–11096

    Article  CAS  Google Scholar 

  20. Dutta A, Dowe N, Ibsen KN, Schell DJ, Aden A (2010) An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol Prog 26:64–72

    CAS  Google Scholar 

  21. Jung YH, Kim IJ, Kim HK, Kim KH (2012) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    Article  CAS  Google Scholar 

  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Laboratory analytical procedure: determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  23. Selig M, Weiss N, Ji Y (2008) Laboratory analytical procedure: enzymatic saccharification of lignocellulosic biomass. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  25. Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): corn stover pretreatment. Cellulose 16:649–659

    Article  CAS  Google Scholar 

  26. Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116–123

    Article  CAS  Google Scholar 

  27. Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem Eng Technol 30:938–944

    Article  CAS  Google Scholar 

  28. Jung YH, Kim IJ, Kim JJ, Oh KK, Han J-I, Choi I-G, Kim KH (2011) Ethanol production from oil palm trunks treated with aqueous ammonia and cellulase. Bioresour Technol 102:7307–7312

    Article  CAS  Google Scholar 

  29. Kingston HM, Jassie LB (1986) Microwave energy for acid decomposition at elevated temperatures and pressures using biological and botanical samples. Anal Chem 58:2534–2541

    Article  CAS  Google Scholar 

  30. Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480

    Article  CAS  Google Scholar 

  31. Lu Y, Mosier NS (2008) Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover. Biotechnol Bioeng 101:1170–1181

    Article  CAS  Google Scholar 

  32. Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Advanced Biomass R & D Center of Korea (2011-0031353) funded by Korean Government (MEST) and from the Ministry for Food, Agriculture, Forestry and Fisheries (12128295500). A Korea University grant through the Institute of Biomedical Science and Food Safety at the Korea University Food Safety Hall is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, Y.H., Kim, I.J., Kim, H.K. et al. Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process. Bioprocess Biosyst Eng 37, 659–665 (2014). https://doi.org/10.1007/s00449-013-1035-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1035-y

Keywords

Navigation