Skip to main content
Log in

Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The most effective way of enzymatic synthesis of biodiesel is through lipase-catalyzed transesterification, while its performance and economic feasibility should still be improved. In this study, lipase produced by an isolated Burkholderia sp. was immobilized on microsize Celite materials functionally modified with long alkyl groups. The specific activity of the immobilized lipase was 1,154 U/g. The methanolysis of olive oil catalyzed by the immobilized lipase obeyed Ping Pong Bi Bi model with an estimated V max, K m,TG, K m,M and K i,M value of 0.61 mol/(L min), 7.93 mol/L, 1.01 mol/L, and 0.24 mol/L, respectively. The activation energy of the enzymatic reaction is estimated as 15.51 kJ/mol. The immobilized lipase exhibits high thermal stability with thermal deactivation energy of 83 kJ/mol and a long half-life. The enthalpy, Gibb’s free energy, and entropy of the immobilized lipase were in the range of 80.02–80.35 kJ/mol, 88.35–90.13 kJ/mol, and −28.22 to −25.11 J/(mol K), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma YC, Singh B, Upadhyay SN (2008) Advancements in development and characterization of biodiesel: a review. Fuel 87:2355–2373

    Article  CAS  Google Scholar 

  2. Sharma YC, Singh B (2009) Development of biodiesel: current scenario. Bioresour Technol 13:1646–1651

    CAS  Google Scholar 

  3. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manage 50:14–34

    Article  CAS  Google Scholar 

  4. Chhetri AB, Tango MS, Budge SM, Chris Watts K, Rafiqul Islam M (2008) Non-edible plant oils as new sources for biodiesel production. Int J Mol Sci 9:169–180

    Article  CAS  Google Scholar 

  5. Patil V, Tran KQ, Giselrød HR (2008) Review: towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195

    Article  CAS  Google Scholar 

  6. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  CAS  Google Scholar 

  7. Jothiramalingam R, Wang MK (2009) Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Ind Eng Chem Res 48:6162–6172

    Article  CAS  Google Scholar 

  8. Calabrò V, Ricca E, Paola M, Curcio S, Iorio G (2010) Kinetics of enzymatic trans-esterification of glycerides for biodiesel production. Bioprocess Biosyst Eng 33:701–710. doi:10.1007/s00449-009-0392-z

    Article  CAS  Google Scholar 

  9. Cho S, Park D, Simkhada J, Hong J, Sohng J, Lee O, Yoo J (2012) A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp CS326. Bioprocess Biosyst Eng 35:227–234. doi:10.1007/s00449-011-0598-8

    Article  CAS  Google Scholar 

  10. Ko M, Park H, Hong S, Yoo Y (2012) Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system. Bioprocess Biosyst Eng 35:69–75. doi:10.1007/s00449-011-0604-1

    Article  CAS  Google Scholar 

  11. Akoh CC, Chang SW, Lee GC, Shaw JF (2007) Enzymatic approach to biodiesel production. J Agric Food Chem 22:8995–9005

    Article  CAS  Google Scholar 

  12. Luna D, Posadillo A, Caballero V, Verdugo C, Bautista FM, Romero AA, Sancho ED, Luna C, Calero J (2012) New biofuel integrating glycerol into its composition through the use of covalent immobilized pig pancreatic lipase. Int J Mol Sci 13:10091–10112

    Article  CAS  Google Scholar 

  13. Liu CH, Chen WM, Chang JS (2007) Methods for rapid screening and isolation of bacteria producing acidic lipase: feasibility studies and novel activity assay protocols. World J Microbiol Biotech 23:633–640

    Article  CAS  Google Scholar 

  14. Liu CH, Lin YH, Chen CY, Chang JS (2009) Characterization of Burkholderia lipase immobilized on celite carriers. J Taiwan Inst Chem Eng 40:359–363

    Article  CAS  Google Scholar 

  15. Liu CH, Chang JS (2008) Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp C20. Bioresour Technol 99:1616–1622

    Article  CAS  Google Scholar 

  16. Liu CH, Huang CC, Wang YW, Lee DJ, Chang JS (2012) Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy 100:41–46

    Article  CAS  Google Scholar 

  17. Tran DT, Chen CL, Chang JS (2012) Immobilization of Burkholderia sp lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol 158:112–119

    Article  CAS  Google Scholar 

  18. Tran DT, Yeh KL, Chen CL, Chang JS (2012) Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresour Technol 108:119–127

    Article  CAS  Google Scholar 

  19. Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221

    Article  CAS  Google Scholar 

  20. Vr Dossat, Combes D, Marty A (2002) Lipase-catalysed transesterification of high oleic olive oil. Enzyme Microb Technol 30:90–94

    Article  Google Scholar 

  21. Al-Zuhair S (2005) Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: a kinetics study. Biotechnol Progr 21:1442–1448

    Article  CAS  Google Scholar 

  22. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102:1298–1315

    Article  CAS  Google Scholar 

  23. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AKS, Radu S, Manap MYA, Saari N (2011) Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotechnol 28:738–745

    Article  CAS  Google Scholar 

  24. Henley JP, Sadana (1986) A Deactivation theory. Biotechnol Bioeng 28:1277–1285

    Article  CAS  Google Scholar 

  25. Liu CH, Huang CC, Wang YW, Chang JS (2012) Optimizing lipase production from isolated Burkholderia sp. J Taiwan Inst Chem Eng 43:511–516

    Article  CAS  Google Scholar 

  26. Pogaku R, Raman J, Ravikumar G (2012) Evaluation of activation energy and thermodynamic properties of enzyme-catalysed transesterification reactions. Adv Chem Eng Sci 2:150–154

    Article  CAS  Google Scholar 

  27. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  Google Scholar 

  28. Kumari A, Mahapatra P, Garlapati VK, Banerjee R (2009) Enzymatic transesterification of Jatropha oil. Biotechnol Biofuels 2:1

    Article  CAS  Google Scholar 

  29. Marangoni AG (2003) Two-substrate reaction enzyme kinetics. Wiley, New York

    Google Scholar 

  30. Busto MD, Busto MD, Ortega N, Perez-Mateos M (1995) Studies on microbial β-d-glucosidase immobilized in alginate gel beads. Process Biochem 30:421–426

    CAS  Google Scholar 

  31. Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM (2002) Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B Enzym 19–20:279–286

    Article  Google Scholar 

  32. Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106

    Article  CAS  Google Scholar 

  33. Wang Y, Wu H, Zong MH (2008) Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol 99:7232–7237

    Article  CAS  Google Scholar 

  34. Whitaker JR (1994) Principles of enzymology for the food sciences, 2nd edn. Marcel Dekker, Inc., New York

    Google Scholar 

  35. Kim HK, Sung MH, Kim HM, Oh TK (1994) Occurrence of thermostable lipase in thermophilic Bacillus sp strain 398. Biosci Biotechnol Biochem 58:961–962

    Article  CAS  Google Scholar 

  36. Shariff FM, Rahman RNZRA, Basri M, Salleh AB (2011) A newly isolated thermostable lipase from Bacillus sp. Int J Mol Sci 12:2917–2934

    Article  CAS  Google Scholar 

  37. Segel IH (1976) Biochemical calculations: how to solve mathematical problems in general biochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  38. Chiou S, Wu W (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    Article  CAS  Google Scholar 

  39. Kristjansson MM, Kinsella JE (1991) Protein and enzyme stability: structural, thermodynamic and experimental aspects. Adv Food Nutr Res 35:237–316

    Article  CAS  Google Scholar 

  40. Owusu RK, Makhzoum A, Knapp JS (1992) Heat inactivation of lipase from Pseudomonas fluorescens P38: activation parameters and enzyme stability at low or ultra-high temperatures. Food Chem 44:261–268

    Article  CAS  Google Scholar 

  41. Adams CM, Brawley TG (1981) Factors influencing the heat resistance of a lipase from Pseudomonas. J Food Sci 46:673–676

    Article  CAS  Google Scholar 

  42. Ariahu CC, Ogunsua O (2000) Thermal degradation kinetics of thiamine in periwinkle based formulated low acidity foods. J Int Food Sci Technol 35:315–321

    Article  CAS  Google Scholar 

  43. Owusu RK, Berthalon N (1993) A test for the two stage thermo inactivation model for chymotrypsin. Food Chem 48:231–235

    Article  CAS  Google Scholar 

  44. Ortega N, de Diego S, Perez-Mateos M, Busto MD (2004) Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chem 88:209–217

    Article  CAS  Google Scholar 

  45. Dring R, Fox PF (1983) Purification and characterization of a heat stable lipase from Pseudomonas fluorescens AFT 29. Irish J Food Sci 7:157–171

    CAS  Google Scholar 

  46. Fox PF, Stepaniak L (1983) Isolation and some properties of extracellular heat-stable lipases from Pseudomonas fluorescens strain AFT 26. J Dairy Res 50:77–89

    Article  CAS  Google Scholar 

  47. Dannenberg F, Kessler HIG (1988) Reaction kinetics of the denaturation of whey proteins. J Food Sci 53:258–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Grants (NSC99-2221-E-006-137-MY3 and NSC102-3113-P-006-016-) from Taiwan’s National Science Council. The Top University grants (also known as the “5-year-50-billion” grant) supported by Ministry of Education, Taiwan are also greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo-Shu Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, DT., Chang, JS. Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Bioprocess Biosyst Eng 37, 481–491 (2014). https://doi.org/10.1007/s00449-013-1017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1017-0

Keywords

Navigation