Skip to main content
Log in

Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biodiesel is one of the most promising renewable fuel sources. Candida antarctica lipase B (CalB) has been used for biodiesel production because of its high activity and stability. However, CalB can only be utilized in industrial biodiesel production if the enzyme deactivation by methanol and the negative effects of glycerol can be mitigated. Methanol inhibition can be avoided by utilizing a stepwise addition of methanol, but there is no suitable method to reduce the glycerol effect. This study aims to use a membrane bioreactor system to remove glycerol during biodiesel production. In addition, methanol inhibition can be reduced by continuously feeding methanol through the membrane system. This continuous membrane bioreactor system can be used for efficient biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97(4):671–678

    Article  CAS  Google Scholar 

  2. Kaieda M, Samukawa T, Matsumoto T, Ban K, Kondo A, Shimada Y, Noda H, Nomoto F, Ohtsuka K, Izumoto E, Fukuda H (1999) Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. J Biosci Bioeng 88(6):627–631

    Article  CAS  Google Scholar 

  3. Komers K, Stloukal R, Machek J, Skopal F (2001) Biodiesel from rapeseed oil, methanol and KOH. 3 Analysis of composition of actual reaction mixture. Eur J Lipid Sci Technol 103(6):363–371

    Article  CAS  Google Scholar 

  4. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70(1):1–15

    Article  CAS  Google Scholar 

  5. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268

    Article  CAS  Google Scholar 

  6. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sustain Energy Rev 4(2):111–133

    Article  CAS  Google Scholar 

  7. Suppes G, Bockwinkel K, Lucas S, Botts J, Mason M, Heppert J (2001) Calcium carbonate catalyzed alcoholysis of fats and oils. J Am Oil Chem Soc 78(2):139–146

    Article  CAS  Google Scholar 

  8. Fjerbaek L, Christensen KV, Norddahl B (2009) A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng 102(5):1298–1315

    Article  CAS  Google Scholar 

  9. Kreutzer UR (1984) Manufacture of fatty alcohols based on natural fats and oils. J Am Oil Chem Soc 61(2):343–348

    Article  CAS  Google Scholar 

  10. Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11(6):1300–1311

    Article  CAS  Google Scholar 

  11. Encinar JM, Gonzalez JF, Rodriguez JJ, Tejedor A (2002) Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. Oils with ethanol. Energy Fuels 16(2):443–450

    Article  CAS  Google Scholar 

  12. Anja EM, Janssen AMV, Hailing PJ (1996) Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microb Technol 18(5):340–346

    Google Scholar 

  13. Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Biorefin 1:57–66

    Article  CAS  Google Scholar 

  14. Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Review: enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17(3–5):133–142

    Article  CAS  Google Scholar 

  15. Watanabe Y, Shimada Y, Sugihara A, Tominaga Y (2002) Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. J Mol Catal B Enzym 27(3–5):151–155

    Article  Google Scholar 

  16. Mohamed M, Soumanou UTB (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33(1):97–103

    Article  Google Scholar 

  17. Chao-Chin Lai SZ, Vali SR, Ju Y-H (2005) Lipase-catalyzed production of biodiesel from rice bran oil. J Chem Technol Biotechnol 80(3):331–337

    Article  Google Scholar 

  18. Shimada Y, Watanabe Y, Samukawab T, Sugiharaa A, Nodac H, Fukudab H, Tominagaa Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76(7)

  19. Stevenson DE, Stanley RA, Furneaux RH (1994) Near-quantitative production of fatty acid alkyl esters by lipase-catalyzed alcoholysis of fats and oils with adsorption of glycerol by silica gel. Enzyme Microb Technol 16(6):478–484

    Article  CAS  Google Scholar 

  20. Bélafi-Bakó K, Kovács F, Gubicza L, Hancsók J (2002) Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal Biotransform 20(6):437–439

    Article  Google Scholar 

  21. Dossat V, Combes D, Marty A (1999) Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb Technol 25(3–5):194–200

    Article  CAS  Google Scholar 

  22. Watanabe Y, Pinsirodom P, Nagao T, Yamauchi A, Kobayashi T, Nishida Y, Takagi Y, Shimada Y (2007) Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. J Mol Catal B Enzym 44(3–4):99–105

    Article  CAS  Google Scholar 

  23. Prazeres DMF, Cabral JMS (1994) Enzymatic membrane bioreactors and their applications. Enzyme Microb Technol 16(9):738–750

    Article  CAS  Google Scholar 

  24. Hong WP (2007) Optimal feeding of methanol for biodiesel production considering product effects. Master’s thesis

  25. Ohlson I, Trägårdh G, Hahn-Hägerdal B (1984) Enzymatic hydrolysis of sodium-hydroxide-pretreated sallow in an ultrafiltration membrane reactor. Biotechnol Bioeng 26(7):647–653

    Article  CAS  Google Scholar 

  26. Giorno L, Drioli E (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol 18(8):339–349

    Article  CAS  Google Scholar 

  27. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98(3):648–653

    Article  CAS  Google Scholar 

  28. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77(4):355–360

    Article  CAS  Google Scholar 

  29. Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100(2):710–716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Strategic Technology Development Program (Project number: 10028394) funded by the Ministry of Knowledge Economy (MKE), Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Je Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ko, M.J., Park, H.J., Hong, S.Y. et al. Continuous biodiesel production using in situ glycerol separation by membrane bioreactor system. Bioprocess Biosyst Eng 35, 69–75 (2012). https://doi.org/10.1007/s00449-011-0604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0604-1

Keywords

Navigation