Skip to main content
Log in

Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Gelatin-/chitosan-/hyaluronan-based biomaterials are used in tissue engineering as cell scaffolds. Three gamma radiation doses (1, 10 and 25 kGy) were applied to scaffolds for sterilization. Microstructural changes of the irradiated polymers were evaluated by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). A dose of 25 kGy produced a rough microstructure with a reduction of the porosity (from 99 to 96 %) and pore size (from 160 to 123 μm). Radiation also modified the glass transition temperature between 31.2 and 42.1 °C (1 and 25 kGy respectively). Human skin cells cultivated on scaffolds irradiated with 10 and 25 kGy proliferated at 48 h and secreted transforming growth factor β3 (TGF-β3). Doses of 0 kGy (non-irradiated) or 1 kGy did not stimulate TGF-β3 secretion or cell proliferation. The specific growth rate and lactate production increased proportionally to radiation dose. The use of an appropriate radiation dose improves the cell scaffold properties of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Metcalfe AD, Ferguson MWJ (2009) Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface 4(14):413–437

    Article  Google Scholar 

  2. Griffith LG, Schwartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    Article  CAS  Google Scholar 

  3. Kuntz RM, Saltzman WM (1997) Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys J 72:1472–1480

    Article  CAS  Google Scholar 

  4. Yannas IV, Burke JF (1980) Design of an artificial skin I. Basic design principles. J Biomed Mater Res 14:65–81

    Article  CAS  Google Scholar 

  5. Romanelli M, Dini V, Bertone M, Barbanera Sy, Brilli C (2007) OASIS® wound matrix versus Hyaloskin® in the treatment of difficult-to-heal wounds of mixed arterial/venous aetiology. In Wound J 4(1):3–7

    Article  Google Scholar 

  6. Falanga V, Sabolinski ML (1999) A bilayered living skin construct (Apligraf®) accelerates complete closure of hard-to-heal venous ulcers. Wound Repair Regen 7:201–207

    Article  CAS  Google Scholar 

  7. Still J, Glat P, Silverstein P, Griswold J, Mozingo D (2003) The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 29(8):837–841

    Article  Google Scholar 

  8. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):510–525

    Article  CAS  Google Scholar 

  9. Tan H, Wu J, Lao L, Gao C (2009) Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater 5:328–337

    Article  CAS  Google Scholar 

  10. Weinstein-Oppenheimer CR, Aceituno AR, Brown DI, Acevedo C, Ceriani R, Fuentes MA, Albornoz F, Henriquez-Roldan CF, Morales P, Maclean C, Tapia SM, Young ME (2010) The effect of an autologous cellular gel-matrix integrated implant system on wound healing. J Transl Med 8:59

    Article  Google Scholar 

  11. Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y (2004) A study on a chitosan–gelatin–hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed 15:25–40

    Article  CAS  Google Scholar 

  12. Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan–gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627

    Article  CAS  Google Scholar 

  13. Xia WY, Liu W, Cui L, Liu YC, Zhong W, Liu DL, Wu JJ, Chua KH, Cao YL (2004) Tissue engineering of cartilage with the use of chitosan–gelatin complex scaffolds. J Biomed Mater Res B Appl Biomater 71B:373–380

    Article  CAS  Google Scholar 

  14. Plikk P, Odelius K, Hakkarainen M, Albertsson AC (2006) Finalizing the properties of porous scaffolds of aliphatic polyesters through radiation sterilization. Biomater 27:5335–5347

    Article  CAS  Google Scholar 

  15. Nanda P, De SK, Manna S, De U, Tarafdar S (2010) Effect of gamma irradiation on a polymer electrolyte: variation in crystallinity, viscosity and ion-conductivity with dose. Nucl Instrum Methods Phys Res B 268:73–78

    Article  CAS  Google Scholar 

  16. Sinha M, Goswami MM, Mal D, Middya TR, Tarafdar S, De U, Chaudhuri SK, Das D (2008) Effect of gamma irradiation on the polymer electrolyte PEO-NH4ClO4. Ionics 14:323–327

    Article  CAS  Google Scholar 

  17. Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    Article  CAS  Google Scholar 

  18. Siritientong T, Srichana T, Aramwit P (2011) The effect of sterilization methods on the physical properties of silk sericin scaffolds. AAPS Pharm Sci Tech 12:771–781

    Article  CAS  Google Scholar 

  19. Acevedo CA, Brown DI, Young ME, Reyes JG (2009) Senescent cultures of human dermal fibroblasts modified phenotype when immobilized in fibrin polymer. J Biomater Sci Polym Ed 20:1929–1942

    Article  CAS  Google Scholar 

  20. Enrione J, Osorio F, Lopez D, Weinstein-Oppenheimer C, Fuentes MA, Ceriani R, Brown DI, Albornoz F, Sanchez E, Villalobos P, Somoza RA, Young ME, Acevedo CA (2010) Characterization of a gelatin/chitosan/hyaluronan scaffold-polymer. Electron J Biotechnol 13:15

    Article  Google Scholar 

  21. Acevedo CA, Weinstein-Oppenheimer C, Brown DI, Huebner H, Buchholz R, Young ME (2009) A mathematical model for the design of fibrin microcapsules with skin cells. Bioprocess Biosyst Eng 32:341–351

    Article  CAS  Google Scholar 

  22. Gorna K, Gogolewski S (2003) The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab 79:465–474

    Article  CAS  Google Scholar 

  23. Goldman M, Pruitt L (1998) Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE. J Biomed Mater Res 40:378–384

    Article  CAS  Google Scholar 

  24. Alijani S, Balaghi S, Mohammadifar MA (2011) Effect of gamma irradiation on rheological properties of polysaccharides exuded by A. fluccosus and A. Gossypinus. Int J Biol Macromol 49:471–479

    Article  CAS  Google Scholar 

  25. Rahman MS, Al-Saidi G, Guizani N, Abdullah A (2010) Development of state diagram of bovine gelatin by measuring thermal characteristics using differential scanning calorimetry (DSC) and cooling curve method. Thermochim Acta 509:111–119

    Article  CAS  Google Scholar 

  26. Yakimets I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J (2005) Mechanical properties with respect to water content of gelatin films in glassy state. Polymer 46:12585

    Article  Google Scholar 

  27. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA (2001) Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocoll 15:423–432

    Article  CAS  Google Scholar 

  28. Fraga AN, Williams RJ (1985) Thermal properties of gelatin films. Polymer 26:113–118

    Article  CAS  Google Scholar 

  29. Chin CD, Khanna K, Sia SK (2008) A microfabricated porous collagen-based scaffold as prototype for skin substitutes. Biomed Microdevices 10:459–467

    Article  CAS  Google Scholar 

  30. Dziedzic-Goclawska A, Kaminski A, Uhrynowska-Tyszkiewicz I, Michalik J, Stachowicz W (2008) Radiation sterilization of human tissue grafts. In: Trends in radiation sterilization of health care products. International Atomic Energy Agency, Viena

  31. Acevedo CA, Somoza RA, Weinstein-Oppenheimer C, Brown DI, Young ME (2010) Growth factor production from fibrin-encapsulated human keratinocytes. Biotechnol Lett 32:1011–1017

    Article  CAS  Google Scholar 

  32. Ferguson MW, O’Kane S (2004) Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 359:839–850

    Article  CAS  Google Scholar 

  33. Hao J, Varshney RR, Wang DA (2008) TGF-beta3: a promising growth factor in engineered organogenesis. Expert Opin Biol Ther 8:1485–1493

    Article  CAS  Google Scholar 

  34. Schultze-Mosgau S, Wehrhan F, Amann K, Radespiel-Troger M, Rodel F, Grabenbauer GG (2003) In vivo TGF-beta 3 expression during wound healing in irradiated tissue: an experimental study. Strahlenther Onkol 179:410–416

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank CONICYT for the Fondecyt Grant (1110607) and FONDEF Grant (D07I1075) and Universidad Técnica Federico Santa María for the Piic2011 fellowship to Rodrigo A. Somoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian A. Acevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acevedo, C.A., Somoza, R.A., Weinstein-Oppenheimer, C. et al. Improvement of human skin cell growth by radiation-induced modifications of a Ge/Ch/Ha scaffold. Bioprocess Biosyst Eng 36, 317–324 (2013). https://doi.org/10.1007/s00449-012-0786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0786-1

Keywords

Navigation