Skip to main content
Log in

Efficient conversion of high concentration of glycerol to Monacolin K by solid-state fermentation of Monascus purpureus using bagasse as carrier

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

High concentration of glycerol was used as the sole carbon source for efficient production of Monacolin K (MK) by solid-state fermentation (SSF) of Monascus purpureus 9901 using agricultural residue (bagasse), as an inert carrier. A comparative study showed that MK production in SSF was about 5.5 times higher than that of submerged fermentation when 26 % of glycerol was used, which may be due to the formation of glycerol concentration gradients in the inert carrier and less catabolite repression in SSF. For enhancement of MK yield in SSF, the effects of different influential variables, such as glycerol concentration, nitrogen source and its concentration, initial moisture content, inoculum size and particle size of bagasse, were systematically examined. All the factors mentioned above had an effect on the MK production in SSF to some extent. The maximal yield of MK (12.9 mg/g) was achieved with 26 % glycerol, 5 % soybean meal, 51 % initial moisture content, 20 % inoculum size and 1 mm particle size of bagasse. The results in this study may expand our understanding on the application of SSF using agricultural residue as carrier for production of useful microbial metabolites, especially the efficient conversion of high concentration of glycerol to MK by Monascus purpureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chi ZY, Pyle D, Wen ZY, Frear C, Chen SL (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    Article  CAS  Google Scholar 

  2. Markov SA, Averitt J, Waldron B (2011) Bioreactor for glycerol conversion into H2 by bacterium Enterobacter aerogenes. Int J Hydrogen Energy 36:262–266

    Article  Google Scholar 

  3. Zhu CJ, Nomura CT, Perrotta JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:426–430

    Google Scholar 

  4. Zhang GL, Ma BB, Xu XL, Li C, Wang LW (2007) Fast conversion of glycerol to 1, 3-propanediol by a new strain of Klebsiella pneumonia. Biochem Eng J 37:256–260

    Article  CAS  Google Scholar 

  5. Gustavo VG, Ernesto FT (2006) Why solid-state fermentation seems to be resistant to catabolite repression. Food Technol Biotechnol 44:397–406

    Google Scholar 

  6. Ramesh MV, Lonsane BK (1990) Critical importance of moisture content in alpha-amylase production by Bacillus licheniformis M27 in solid state fermentation. Appl Microbiol Biotechnol 33:501–505

    Article  CAS  Google Scholar 

  7. Alberts AW, Chen J, Kuron G, Hunt V, Hoffman C (1980) Mevinolin: a highly potent competitive inhibitor of hydroxymethyl-glutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci 77:3957–3961

    Article  CAS  Google Scholar 

  8. Ho BY, Pan TM (2009) The Monascus metabolite Monacolin K reduces tumor progression and metastasis of Lewis lung carcinoma cells. J Agric Food Chem 57:8258–8265

    Article  CAS  Google Scholar 

  9. Valera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar D (2005) Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb Technol 37:521–526

    Article  CAS  Google Scholar 

  10. Panda BP, Javed S, Ali M (2010) Optimization of fermentation parameters for higher Lovastatin production in red mold rice through co-culture of Monascus purpureus and Monascus ruber. Food Bioprocess Technol 3:373–378

    Article  CAS  Google Scholar 

  11. Jesús GB, Araceli T, George S, Javier BG (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110

    Article  Google Scholar 

  12. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    Article  CAS  Google Scholar 

  13. Li SW, Li M, Song HP, Feng JL, Tai XS (2011) Induction of a high-yield lovastatin mutant of Aspergillus terreus by 12C6+ heavy-ion beam irradiation and the influence of culture conditions on lovastatin production under submerged fermentation. Appl Biochem Biotechnol 165:913–925

    Article  CAS  Google Scholar 

  14. Chang YN, Lin YC, LEE CC, Liu BL, Tzeng YM (2002) Effect of rice-glycerol complex medium on the production of lovastatin by Monascus ruber. Folia Microbiol 47:584–677

    Article  Google Scholar 

  15. Lee CL, Wang JJ, Kuo SL, Pan TM (2006) Monascus fermentation of dioscorea for increasing the production of cholesterol-lowering agent-monacolin K and antiinflammation agent-monascin. Appl Microbiol Biotechnol 72:1254–1262

    Article  CAS  Google Scholar 

  16. Su YC, Wang JJ, Lin TT, Pan TM (2003) Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:40–46

    Google Scholar 

  17. Sun BS, Zhou LP, Chen XF, Ma LF (2004) Detection of Ergosterol in the Fermentation Sample of Monascus by HPLC. China Food Addit 2:89–92

    Google Scholar 

  18. Subhagar S, Aravindan R, Viruthagiri T (2009) Response surface optimization of mixed substrate solid state fermentation for the production of lovastatin by Monascus purpureus. Eng Life Sci 4:303–310

    Article  Google Scholar 

  19. Pintado J, Lonsane BK, Gaime-Perrau I, Roussos S (1998) On-line monitoring of citric acid production in solid-state culture by respirometry. Process Biochem 33:513–518

    Article  CAS  Google Scholar 

  20. Xu GR, Yue C, Yun C, Xiaorong L, Xing L (2005) Production of monacolin K in solid-state fermentation of Monascus sp. 9901 that does not produce citrinin. www.plantpro.doae.go.th/worldfermentedfood/p16

  21. Xu BJ, Wang QJ, Jia XQ, Sung CK (2005) Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol Bioprocess Eng 10:78–84

    Article  CAS  Google Scholar 

  22. Liu G, Xu ZN, Cen PL (2000) A morphologically structured model for mycelial growth and secondary metabolite formation. Chin J Chem Eng 8:46–51

    Google Scholar 

  23. Hajjaj H, Niederberger P, Duboc P (2001) Lovastatin biosynthesis by Aspergillus terreus in a chemically defined medium. Appl Environ Microbiol 67:2596–2602

    Article  CAS  Google Scholar 

  24. Casas López JL, Sánchez Pérez JA, Fernández Sevilla JM, Acién Fernández FG, Molina Grima E, Chisti Y (2003) Production of lovastatin by Aspergillus terreus: effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzyme Microb Technol 33:270–277

    Article  Google Scholar 

  25. Pandey A (2003) Solid-state fermentation. Biochem Eng 13:81–84

    Article  CAS  Google Scholar 

  26. Pokorny D, Cimerman A, Steiner W (1997) Aspergillus niger lipases: induction, isolation and characterization of two lipases from MZKI, A116 strain. J Mol Catal B. Enzyme 2:215–222

    Article  CAS  Google Scholar 

  27. Mahanta N, Gupta A, Khare SK (2008) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol 99:1729–1735

    Article  CAS  Google Scholar 

  28. Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721

    Article  CAS  Google Scholar 

  29. Dahiya N, Tewari R, Tiwari RP, Hoondal GS (2005) Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design. Curr Microbiol 51:222–228

    Article  CAS  Google Scholar 

  30. Prakasham RS, Subba Rao C, Sarma PN (2006) Green gram husk–an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour Technol 97:1449–1454

    Article  CAS  Google Scholar 

  31. Ellaiah P, Srinivasulu B, Adinarayana K (2004) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem 39:529–534

    Article  CAS  Google Scholar 

  32. Sangeetha PT, Ramesh MN, Prapulla SG (2004) Production of fructosyl transferase by Aspergillus oryzae CFR 202 in solid-state fermentation using agricultural by-products. Appl Microbiol Biotechnol 65:530–537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 21046010), the Science Fund of Jiangnan University (Grant No. 573) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gan-Rong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, LP., Zhang, BB. & Xu, GR. Efficient conversion of high concentration of glycerol to Monacolin K by solid-state fermentation of Monascus purpureus using bagasse as carrier. Bioprocess Biosyst Eng 36, 293–299 (2013). https://doi.org/10.1007/s00449-012-0784-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0784-3

Keywords

Navigation