Skip to main content
Log in

Induction of a High-Yield Lovastatin Mutant of Aspergillus terreus by 12C6+ Heavy-Ion Beam Irradiation and the Influence of Culture Conditions on Lovastatin Production Under Submerged Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Heavy-ion beams, possessing a wide mutation spectrum and increased mutation frequency, have been used effectively as a breeding method. In this study, the heavy-ion beams generated by the Heavy-Ion Research Facility in Lanzhou were used to mutagenize Aspergillus terreus CA99 for screening high-yield lovastatin strains. Furthermore, the main growth conditions as well as the influences of carbon and nitrogen sources on the growth and the lovastatin production of the mutant and the original strains were investigated comparatively. The spores of A. terreus CA99 were irradiated by 15, 20, 25, and 30 Gy of 80 MeV/u 12C6+ heavy-ion beams. Based on the lovastatin contents in the fermentation broth, a strain designated as A. terreus Z15-7 has been selected from the clone irradiated by the heavy-ion beam. When compared with the original strain, the content of lovastatin in the fermentation broth of A. terreus Z15-7 increased 4-fold. Moreover, A. terreus Z15-7 efficiently used the carbon and nitrogen sources for the growth and production of lovastatin when compared to the original strain. The maximum yield of lovastatin, 916.7 μg/ml, was obtained as A. terreus Z15-7 was submerged cultured in the chemically defined medium supplemented with 3% glycerol as a carbon source, 1% corn meal as an organic nitrogen source, and 0.2% sodium nitrate as an inorganic nitrogen source at 30 °C in the shake flask. The result shows that heavy-ion beam irradiation is an effective method for the mutation breeding of lovastatin production of A. terreus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, Q. (2007). Advances in Space Research, 40, 455–460.

    Article  CAS  Google Scholar 

  2. Kikuchi, S., Saito, Y., Ryuto, H., Fukunishi, N., Abe, T., Tanaka, H., et al. (2009). Mutation Research, 669, 63–66.

    CAS  Google Scholar 

  3. Shikazono, N., Suzuki, C., Kitamura, S., Watanabe, H., Tano, S., & Tanaka, A. (2005). Journal of Experimental Botany, 56, 587–596.

    Article  CAS  Google Scholar 

  4. Zhang, M., Liang, S., Hang, X., Xiang, Y., Cheng, Z., Li, W., et al. (2011). Advances in Space Research, 47, 1054–1061.

    Article  CAS  Google Scholar 

  5. Matuo, Y., Nishijima, S., Hase, Y., Sakamoto, A., Tanaka, A., & Shimizu, K. (2006). Mutation Research, 602, 7–13.

    CAS  Google Scholar 

  6. Gu, S. B., Li, S. C., Feng, H. Y., Wu, Y., & Yu, Z. L. (2008). Applied Microbiology and Biotechnology, 78, 201–209.

    Article  CAS  Google Scholar 

  7. Endo, A. (1979). Journal of Antibiotics, 32, 852–854.

    CAS  Google Scholar 

  8. Alberts, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., et al. (1980). Proceedings of National Academy of Sciences of the United States of America, 77, 3957–3961.

    Article  CAS  Google Scholar 

  9. Frishman, W. H., Zimetbaum, P., & Nadelmann, J. (1989). Journal of Clinical Pharmacology, 29, 975–982.

    CAS  Google Scholar 

  10. Manzoni, M., & Rollini, M. (2002). Applied Microbiology and Biotechnology, 58, 555–564.

    Article  CAS  Google Scholar 

  11. Barrios-González, J., & Miranda, R. U. (2010). Applied Microbiology and Biotechnology, 85, 869–883.

    Article  Google Scholar 

  12. Endo, A., Kuroda, M., & Tsujita, Y. (1976). Journal of Antibiotics, 29, 1346–1348.

    CAS  Google Scholar 

  13. Kumar, M. S., Jana, S. K., Senthil, V., Shashanka, V., Kumar, S. V., & Sadhukhan, A. K. (2000). Process Biochemistry, 36, 363–368.

    Article  CAS  Google Scholar 

  14. Casas López, J. L., Sánchez Pérez, J. A., Fernández Sevilla, J. M., Acién Fernández, F. G., Molina Grima, E., & Chisti, Y. (2003). Enzyme and Microbial Technology, 33, 270–277.

    Article  Google Scholar 

  15. Lai, L. S. T., Pan, C. C., & Tzeng, B. K. (2003). Process Biochemistry, 38, 1317–1326.

    Article  CAS  Google Scholar 

  16. Manzoni, M., Bergomi, S., Rollini, M., & Cavazzoni, V. (1999). Biotechnology Letters, 21, 253–257.

    Article  CAS  Google Scholar 

  17. Hajjaj, H., Niederberger, P., & Duboc, P. (2001). Applied and Environmental Microbiology, 67, 2596–2602.

    Article  CAS  Google Scholar 

  18. Jia, Z., Zhang, X., & Cao, X. (2009). Asia-Pacific Journal of Chemical Engineering, 4, 672–677.

    Article  CAS  Google Scholar 

  19. Miyake, T., Uchitomi, K., Zhang, M. Y., Kono, I., Nozaki, N., Sammoto, H., et al. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1154–1159.

    Article  CAS  Google Scholar 

  20. Wen, J., Gu, X. L., Chang, P., & Jing, Z. L. (2000). China Food Additives, 4, 11–17.

    Google Scholar 

  21. Lai, L. S., Hung, C. S., & Lo, C. C. (2007). Journal of Bioscience and Bioengineering, 104, 9–13.

    Article  CAS  Google Scholar 

  22. Panda, B. P., Javed, S., & Ali, M. (2009). Biotechnology and Bioprocess Engineering, 14, 123–127.

    Article  CAS  Google Scholar 

  23. Sorrentino, F., Roy, I., & Keshavarz, T. (2010). Applied Microbiology and Biotechnology, 88, 65–73.

    Article  CAS  Google Scholar 

  24. Palego, L., Giannaccini, G., Saccomanni, G., Rossi, A., Lucchesi, V., Mascia, G., et al. (2010). Chromatographia, 71, 291–297.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (30960063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Weng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, SW., Li, M., Song, HP. et al. Induction of a High-Yield Lovastatin Mutant of Aspergillus terreus by 12C6+ Heavy-Ion Beam Irradiation and the Influence of Culture Conditions on Lovastatin Production Under Submerged Fermentation. Appl Biochem Biotechnol 165, 913–925 (2011). https://doi.org/10.1007/s12010-011-9308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9308-x

Keywords

Navigation