Skip to main content
Log in

Effects of carbon sources and feeding strategies on heparosan production by Escherichia coli K5

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This work aimed to develop an optimal carbon source feeding strategy to achieve maximal production of heparosan as a precursor of bioengineered heparin by Escherichia coli K5. Glycerol gave higher heparosan titer and productivity compared to glucose. The maximum heparosan production (187 mg/L) and heparosan productivity (5.19 mg/L/h) in glycerol-defined medium were 26.4% higher than the heparosan production (148 mg/L) and heparosan productivity (4.11 mg/L/h) in glucose-defined medium. DO-stat feeding approach as compared to pH-stat feeding, exponential feeding, exponential combined with pH-stat feeding, and constant rate feeding gave the highest heparosan titer at 8.63 g/L, which was nine times that of batch culture. The obtained optimal glycerol feeding strategy may be useful for the scaling-up of microbial heparosan production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Linhardt RJ (2003) Heparin: structure and activity. J Med Chem 46:2551–2554

    Article  CAS  Google Scholar 

  2. Liu H, Zhang Z, Linhardt RJ (2009) Lessons learned from the contamination of heparin. Nat Prod Rep 26:313–321

    Article  CAS  Google Scholar 

  3. Bauer KA, Hawkins DW, Peters PC, Petitou M, Herbert JM, van Boeckel CAA, Meuleman DG (2002) Fondaparinux, a synthetic pentasaccharide: the first in a new class of antithrombotic agents-the selective factor Xa inhibitors. Cardiovasc Drug Rev 20:37–52

    Article  CAS  Google Scholar 

  4. Sinay P, Jacquinet JC, Petitou M, Duchaussoy P, Lederman I, Choay J, Torri G (1984) Total synthesis of a heparin pentasaccharide fragment having high affinity for antithrombin III. Carbohydr Res 132:C5–C9

    Article  CAS  Google Scholar 

  5. Vann WF, Schmidt MA, Jann B, Jann K (1981) The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli O10:K5:H4. A polymer similar to desulfo-heparin. Eur J Biochem 116:359–364

    Article  CAS  Google Scholar 

  6. DeAngelis PL, White CL (2002) Identification and molecular cloning of a heparosan synthase from Pasteurella multocida type D. J Biol Chem 277:7209–7213

    Article  CAS  Google Scholar 

  7. Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nature Biotech 21:1343–1346

    Article  CAS  Google Scholar 

  8. Lindahl U, Li JP, Kusche-Gullberg M, Salmivirta M, Alaranta S, Veromaa T, Emeis J, Roberts I, Taylor C, Oreste P, Zoppetti G, Naggi A, Torri G, Casu B (2005) Generation of “Neoheparin” from E. coli K5 capsular polysaccharide. J Med Chem 48:349–352

    Article  CAS  Google Scholar 

  9. Chen J, Avci FY, Munoz EM, McDowell LM, Chen M, Pedersen LC, Zhang L, Linhardt RJ, Liu J (2005) Enzymatic redesigning of biological active heparan sulfate. J Biol Chem 280:42817–42825

    Article  CAS  Google Scholar 

  10. Manzoni M, Bergomi S, Cavazzoni V (1996) Production of K5 polysaccharides of different molecular weight by Escherichia coli. J Bioact Compat Polym 11:301–311

    CAS  Google Scholar 

  11. Viskov C, Lux F, Gervier R, Colas G (2008) Method for producing K5 polysaccharide. US Patent 0032349

  12. Wang Z, Ly M, Zhang F, Zhong W, Suen A, Hickey A, Dordick JD, Linhardt RJ (2010) E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor. Biotechnol Bioeng 107:964–973

    Article  CAS  Google Scholar 

  13. Lee SY (1996) High cell density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  14. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100:260–265

    Article  CAS  Google Scholar 

  15. Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  Google Scholar 

  16. Kim BS, Lee SC, Lee SY, Chang YK, Chang HN (2004) High cell density fed-batch cultivation of Escherichia coli using exponential feeding combined with pH-stat. Bioprocess Biosyst Eng 26:147–150

    Article  CAS  Google Scholar 

  17. Wang Z, Dordick JS, Linhardt RJ (2011) Escherichia coli K5 heparosan fermentation and improvement by genetic engineering. Bioeng Bugs 2:1–5

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundation of China (20836003), the Major State Basic Research Development Program of China (973 Program, 2012CB720806), and the National High Technology Research and Development Program of China (863 Program, 2011AA100905), and 111 Project (111-2-06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Liu or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, L., Chen, J. et al. Effects of carbon sources and feeding strategies on heparosan production by Escherichia coli K5. Bioprocess Biosyst Eng 35, 1209–1218 (2012). https://doi.org/10.1007/s00449-012-0708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0708-2

Keywords

Navigation