Skip to main content
Log in

Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K m value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V max value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmad JI (1994) Cholesterol: a current perspective. Nut Food Sci 94:8–11

    Article  Google Scholar 

  2. American Heart Association. Good vs. bad cholesterol. http://www.heart.org/HEARTORG/Conditions/Cholesterol/AboutCholesterol/Good-vs-Bad-Cholesterol_UCM_305561_Article.jsp#.TslQPnIRSBM

  3. Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999

    Article  CAS  Google Scholar 

  4. Wiseman A (1995) Introduction to principles. In: Wiseman A (ed) Handbook of enzyme biotechnology, 3rd edn. Ellis Horwood, T.J. Press, Padstow, pp 3–8

    Google Scholar 

  5. Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Proc Biochem 35:85–89

    Article  CAS  Google Scholar 

  6. Maia MMD, Heasley A, Camargo de Morais MM, Melo EHM, Morais MAJ, Ledingham WM (2001) Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Biores Technol 76:23–27

    Article  CAS  Google Scholar 

  7. Gerhartz W (1990) Industrial uses of enzymes. In: Enzymes in industry, production and application. VCH, Weinheim, pp 77–148

  8. Kato K, Nakamura S, Sakugi T, Kitai K, Yone K, Suzuki J, Ichikawa Y (1989) Tumor necrosis factor and its activators for the treatment of malignant tumors. Jpn Pat 1(186):820

    Google Scholar 

  9. Ville E, Carriere F, Renou C, Laugier R (2002) Physiological study of pH stability and sensitivity to pepsin of human gastric lipase. Digestion 65:73–81

    Article  CAS  Google Scholar 

  10. Karube I, Sode K (1988) Biosensors for lipids. In: Applewhite TH (ed) Proceedings of the World Conference on Biotechnology in the fats and oils industry. American Oil Chemists’ Society, Campaign, pp 215–218

    Google Scholar 

  11. Iwai M (1990) Fundamentals and use of enzyme lipase 7. Application of lipase. Yushi 43:66–72

    CAS  Google Scholar 

  12. Seema SB, Steven HN (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23:3627–3636

    Article  Google Scholar 

  13. Won K, Kim S, Kim KJ, Park HW, Moon SJ (2005) Optimization of lipase entrapment in Ca-alginate gel beads. Proc Biochem 40:2149–2154

    Article  CAS  Google Scholar 

  14. Hoffman AS (1992) Immobilization of biomolecules and cells on and within polymeric biomaterials. Clin Mater 11:61–65

    Article  Google Scholar 

  15. Lei L, Bai YX, Li YF, Yi LX, Yang Y, Xia CG (2009) Study on immobilization of lipase onto magnetic microspheres with epoxy groups. J Magn Magn Mater 321:252–258

    Article  CAS  Google Scholar 

  16. Magnan E, Catarino I, Paolucci-Jeanjean D, Preziosi-Belloy L, Belleville MP (2004) Immobilization of lipase on a ceramic membrane: activity and stability. J Memb Sci 241:161–166

    Article  CAS  Google Scholar 

  17. Huang L, Cheng ZM (2008) Immobilization of lipase on chemically modified bimodal ceramic foams for olive oil hydrolysis. Chem Eng. J 144:103–109

    Article  CAS  Google Scholar 

  18. Bellucci S (2009) Nanoparticles and nanodevices in biological applications 2:5–7

    Google Scholar 

  19. Xing ZC, Chang Y, Kang IK (2010) Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Sci Technol Adv Mater 11:1–17

    Article  Google Scholar 

  20. Lee HK, Lee JK, Kim MJ, Lee Cheol J (2010) Immobilization of lipase on single walled carbon nanotubes in ionic liquid. Bull Korean Chem Soc 31:650

    Article  CAS  Google Scholar 

  21. Ramani K, Boopathy R, Vidya C, John Kennedy L, Velan M, Sekaran G (2010) Immobilisation of Pseudomonas gessardii acidic lipase derived from beef tallow onto mesoporous activated carbon and its application to hydrolysis of olive oil. Process Biochem 45:986–992

    Article  CAS  Google Scholar 

  22. Ramani K, John Kennedy L, Vidya C, Boopathy R, Sekaran G (2010) Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. J. Mol Catal B Enzym 62:59–66

    Google Scholar 

  23. Ye L, Zhang B, Seviour EG, Tao K, Liu X, Ling Y, Chen J, Wang G (2011) Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett 307:6–17

    Article  CAS  Google Scholar 

  24. Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, Hoover HH, Cravatt BF (2011) Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol 18:846–856

    Article  CAS  Google Scholar 

  25. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF (2010) Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell 140:49–61

    Article  CAS  Google Scholar 

  26. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  27. Ramani K, John Kennedy L, Ramakrishnan M, Sekaran G (2010) Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem 45:1683–1691

    Article  CAS  Google Scholar 

  28. Deuerlu N, Akpinard MA (2002) Partial purification of intestinal triglyceride lipase from Cyprinion macrostomus Heckel, 1843 and effect of ph on enzyme activity. Turk J Biol 26:133–143

    Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randal J (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  31. Ramakrishnan S, Sulochana KN, Punitham R, Arunagiri K (1996) Free alanine, aspartic acid, or glutamic acids reduce the glycation of human lens proteins. Glycoconj J 13:519–523

    Article  CAS  Google Scholar 

  32. Ireland JT (1941) The colorimetric estimation of total cholesterol in whole blood, serum, plasma and other biological material. Biochem J 35:283–293

    CAS  Google Scholar 

  33. Joseph AK, Shauna Anderson M, Rawle JM (1972) Chemical basis of the sulfo-phospho-vanillin reaction for estimating total serum lipids. Clin Chem 18:199–202

    Google Scholar 

  34. Kanwar L, Gogoi BK, Goswami P (2002) Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresour Technol 84:207–211

    Article  CAS  Google Scholar 

  35. Mobarak QE, Kasra KR, Moosavi Z (2011) Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iranian J Microbiol 3:92–98

    Google Scholar 

  36. Jaeger KE, Ransa S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  Google Scholar 

  37. Kojima Y, Shimizu S (2003) Purification and characterization of the lipase from Pseudomonas fluorescens HU380. J Biosci Bioeng 96:219–226

    CAS  Google Scholar 

  38. Karadzic I, Masui A, Zivkovic LI, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 102:82–89

    Article  CAS  Google Scholar 

  39. Rahman RNZRA, Baharum SN, Basri M, Salleh AB (2005) High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341:267–274

    Article  CAS  Google Scholar 

  40. Gilbert EJ, Drozd JW, Jones CW (1991) Physiological regulation and optimization of lipase activity in Pseudomonas aeruginosa EF2. J Gen Microb 137:2215–2221

    CAS  Google Scholar 

  41. Ogino H, Nakagawa S, Shinya K, Muto T, Fujimura N, Yasudo M, Ishikawa H (2000) Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 89:451–457

    Article  CAS  Google Scholar 

  42. Lin SF, Chioul CM, Yeh CM, Tsai YC (1996) Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Appl Environ Microbiol 62:1093–1095

    CAS  Google Scholar 

  43. Jinwal U, Roy U, Chowdhury A, Bhaduri A, Roy PK (2003) Purification and characterization of an alkaline lipase from a newly isolated Pseudomonas mendoncina PK-12Cs and chemoselective hydrolysis of fatty acid ester. Bioorg Med Chem 11:1041–1046

    Article  CAS  Google Scholar 

  44. Monsan P, Lopez A (1981) On the production of dextran by free and immobilized dextransurase. Biotechnol Bioeng 23:2027–2037

    Article  CAS  Google Scholar 

  45. Shuler ML, Kargi F (2005) Bioprocess engineering-basic concepts. Prentice Hall, Englewood Cliffs

    Google Scholar 

  46. John Kennedy L, Selvi PK, Aruna P, Hema KN, Sekaran G (2007) Immobilization of polyphenol oxidase onto mesoporous activated carbons—isotherm and kinetic studies. Chemosphere 69(2):262–270

    Article  Google Scholar 

Download references

Acknowledgments

The author K. Ramani is thankful to Council of Scientific and Industrial Research (CSIR) New Delhi, India, and Central Leather Research Institute (CLRI), India, for awarding a research fellowship and providing the facilities needed to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramani, K., Sekaran, G. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells. Bioprocess Biosyst Eng 35, 885–896 (2012). https://doi.org/10.1007/s00449-011-0673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0673-1

Keywords

Navigation