Skip to main content
Log in

Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol–gel magnetic sporopollenin

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Candida rugosa lipase was encapsulated within a sol–gel procedure and improved considerably by fluoride-catalyzed hydrolysis of mixtures of octyltriethoxysilane and tetraethoxysilane in the presence of magnetic sporopollenin. The catalytic properties of the immobilized lipases were evaluated into model reactions, i.e., the hydrolysis of p-nitrophenylpalmitate (p-NPP), and the enantioselective hydrolysis of racemic naproxen methyl ester, mandelic acid methyl ester or 2-phenoxypropionic acid methyl ester that were studied in aqueous buffer solution/isooctane reaction system. The encapsulated magnetic sporopollenin (Spo-M-E) was found to give 319 U/g of support with 342% activity yield. It has been observed that the percent activity yields and enantioselectivity of the magnetic sporopollenin encapsulated lipase were higher than that of the encapsulated lipase without support. The substrate specificity of the encapsulated lipase revealed more efficient hydrolysis of the racemic naproxen methyl ester and 2-phenoxypropionic acid methyl ester than racemic mandelic acid methyl ester. It was observed that excellent enantioselectivity (E > 400) was obtained for encapsulated lipase with magnetic sporopollenin with an ee value of S-Naproxen and R-2 phenoxypropionic acid about 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moreno JM, Sinisterra JV (1994) Immobilization of lipase from Candida cylindracea on inorganic supports. J Mol Catal B Enzym 93:357–369

    CAS  Google Scholar 

  2. Matsumoto M, Sumi N, Ohmori K, Kondo K (1998) Immobilization of lipase in microcapsules prepared by organic and inorganic materials. Process Biochem 33:535–540

    Article  CAS  Google Scholar 

  3. Bódalo A, Bastida J, Máximo MF, Montiel MC, Gómez M, Murcia MD (2008) Production of ricinoleic acid estolide with free and immobilized lipase from Candida rugosa. Biochem Eng J 39:450–456

    Article  Google Scholar 

  4. Chubey A, Parshad R, Taneja SC, Qazi GN (2009) Arthrobacter sp. lipase immobilization on magnetic sol-gel composite supports for enantioselectivity improvement. Process Biochem 44:154–160

    Article  Google Scholar 

  5. Chubey A, Parshad R, Koul S, Taneja SC, Qazi GN (2006) Enantioselectivity modulation through immobilization of Arthrobacter sp. lipase: kinetic resolution of fluoxetine intermediate. J Mol Catal B Enzym 42:39–44

    Article  Google Scholar 

  6. Nagao T, Watanabe Y, Kobayashi T, Sumidab M, Kishimotoc N, Fujitac T, Shimada Y (2007) Enzymatic purification of dihomo-γ-linolenic acid from Mortierella single-cell oil. J Mol Catal B Enzym 44:14–19

    Article  CAS  Google Scholar 

  7. Kilinc A, Teke M, Onal S, Telefoncu A (2006) Immobilization for pancreatic lipase on chitin and chitosan. Prep Biochem Biotechnol 36:153–163

    Article  CAS  Google Scholar 

  8. Gardossi L, Poulsen PB, Ballesteros A, Hult K, Švedas VK, Vasić-Rački Ð, Carrea G, Magnusson A, Schmid A, Wohlgemuth R, Halling PJ (2010) Guidelines for reporting of biocatalytic reactions. Trends Biotechnol 28:171–180

    Article  CAS  Google Scholar 

  9. Bai S, Guo Z, Liu W, Sun Y (2006) Resolution of (±)-menthol by immobilized Candida rugosa lipase on superparamagnetic nanoparticles. Food Chem 96:1–7

    Article  CAS  Google Scholar 

  10. Bai YX, Li YF, Wang MT (2006) Study on synthesis of a hydrophilic bead carrier containing epoxy groups and its properties for glucoamylase immobilization. Enzyme Microb Technol 39:540–547

    Article  CAS  Google Scholar 

  11. Arica MY, Yavuz H, Patir S, Denizli A (2000) Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. J Mol Catal B Enzym 11:127–138

    Article  CAS  Google Scholar 

  12. Bilkova Z, Slovakova M, Horak D, Lenfeld J, Churacek J (2002) Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. J Chromatogr B 770:177–181

    Article  CAS  Google Scholar 

  13. Guo Z, Bai S, Sun Y (2003) Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme Microb Technol 32:776–782

    Article  CAS  Google Scholar 

  14. Spanova A, Rittich B, Horak D, Lenfeld J, Prodelalova J, Suckova J, Strumcova S (2003) Immunomagnetic separation and detection of Salmonella cells using newly designed carriers. J Chromatogr A 1009:215–221

    Article  CAS  Google Scholar 

  15. Robinson PJ, Dunnill P, Lilly MD (1973) The properties of magnetic supports in relation to immobilized enzyme reagents. Biotechnol Bioeng 15:603–606

    Article  CAS  Google Scholar 

  16. Khng HP, Cunliffe D, Davies S, Turner NA, Vulfson EN (1998) The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins. Biotechnol Bioeng 60:419–424

    Article  CAS  Google Scholar 

  17. Xue B, Sun Y (2002) Fabrication and characterization of a rigid magnetic matrix for protein adsorption. J Chromatogr A 947:185–193

    Article  CAS  Google Scholar 

  18. Vural US, Ersoz M, Pehlivan M (1995) Ligand sorption kinetics of aromatic amines on new ligand-exchanger sporopollenin in cobalt ion form. J Appl Polym Sci 58:2423–2428

    Article  CAS  Google Scholar 

  19. Yilmaz E, Sezgin M, Yilmaz M (2010) Enantioselective hydrolysis of racemic naproxen methyl ester with sol–gel encapsulated lipase in the presence of sporopollenin. J Mol Catal B Enzym 62:162–168

    Google Scholar 

  20. Pan SH, Kawamoto T, Fukui T, Sonomoto K, Tanaka A (1990) Stereoselective esterification of halogen-containing carboxylic acids by lipase in organic solvent; effects of alcohol chain length. Appl Microbiol Biotechnol 34:47–51

    Article  CAS  Google Scholar 

  21. Ueji S, Fujino R, Okubo N, Miyazawa T, Kurita S, Kitadani M et al (1992) Solvent-induced inversion of enantioselectivity in lipasecatalyzed esterification of 2-phenoxy acids. Biotechnol Lett 14:163–168

    Article  CAS  Google Scholar 

  22. Tsai SW, Dordick JS (1996) Extraordinary enantiospecificity of lipase catalysis in organic media induced by purification and catalyst engineering. Biotechnol Bioeng 52:296–300

    Article  CAS  Google Scholar 

  23. Pepin P, Lortie R (1999) Influence of water activity on the enantioselective esterification of (R, S)-ibuprofen by Candida antarctica lipase B in solventless media. Biotechnol Bioeng 63:502–505

    Article  CAS  Google Scholar 

  24. Barton MJ, Hamman JP, Kenneth CF, Calton GJ (1990) Enzymatic resolution of (R, S)-2-(4-hydroxyphenoxy) propionic acid. Enzyme Microb Technol 12:577–583

    Article  CAS  Google Scholar 

  25. Sanchez EM, Bello JF, Manuel GR, Burguillo FJ, Moreno JM (1996) Sinisterra JV (1996) Kinetic and enantioselective behavior of the lipase from Candida cylindracea: a comparative study between the soluble enzyme and the enzyme immobilized on agarose and silica gels. Enzyme Microb Technol 18:468–476

    Article  CAS  Google Scholar 

  26. Bornscheuer U, Herar A, Kreye L, Wendel V, Capewell A, Meyer HH et al (1993) Factors affecting the lipase catalyzed transesterification reactions of 3-hydroxy esters in organic solvents. Tetrahedron Asymmetr 4:1007–1016

    Article  CAS  Google Scholar 

  27. Frings K, Koch M, Hartmeier W (1999) Kinetic resolution of 1-phenyl ethanol with high enantioselectivity with native and immobilized lipase in organic solvents. Enzyme Microb Technol 25:303–309

    Article  CAS  Google Scholar 

  28. FDA’s Policy statement for the development of new stereoisomeric drugs (1992) Chirality 4:338

    Article  Google Scholar 

  29. Ghanem A (2007) Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 63:1721–1754

    Article  CAS  Google Scholar 

  30. Ganapati DY, Sivakumar P (2004) Enzyme-catalysed optical resolution of mandelic acid via (R, S)-(±)-methyl mandelate in non-aqueous media. Biochem Eng J 19:101–107

    Article  Google Scholar 

  31. Cristiane P, Maria GN (2006) Effects of organic solvents and ionic liquids on the aminolysis of (R, S)-methyl mandelate catalyzed by lipases. Tetrahedron Asymmetr 17:428–433

    Article  Google Scholar 

  32. Neide Q, Maria DGN (2002) Pseudomonas sp. lipase immobilized in polymers versus the use of free enzyme in the resolution of (R, S)-methyl mandelate. Tetrahedron Lett 43:5225–5227

    Article  Google Scholar 

  33. Rohit S, Yusuf C, Uttam CB (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662

    Article  Google Scholar 

  34. Fernandez-Lorente G, Fernández-Lafuente R, Palomo JM, Mateo C, Bastida A, Coca J et al (2001) Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. J Mol Catal B Enzym 11:649–656

    Article  CAS  Google Scholar 

  35. Chaubey A, Parshad R, Koul S, Taneja SC, Qazi GN (2006) Arthrobacter sp. Lipase immobilization for improvement in stability and enantioselevtivity. Appl Microbiol Biot 73:598–606

    Article  CAS  Google Scholar 

  36. Yilmaz E, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on magnetic sol–gel composite supports for enzymatic resolution of (R, S)-Naproxen methyl ester. J Mol Catal B Enzym 69:35–41

    Article  CAS  Google Scholar 

  37. Wu JY, Liu SW (2000) Influence of alcohol concentration on lipase-catalyzed enantioselective esterification of racemic Naproxen in isooctane: under controlled water activity. Enzym Microbiol Technol 26:124–130

    Article  CAS  Google Scholar 

  38. Colton IJ, Ahmed SN, Kazlauskas RJ (1995) A 2-Propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J Org Chem 60:212–217

    Article  CAS  Google Scholar 

  39. Paunov VN, Mackenziea G, Stoyanov SD (2007) Sporopollenin micro-reactors for in situ preparation, encapsulation and targeted delivery of active components. J Mater Chem 17:609–612

    Article  CAS  Google Scholar 

  40. Reetz MT, Tielmann P, Wisenhofer W, Konen W, Zonta A (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  41. Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    Article  CAS  Google Scholar 

  42. Johri S, Verma V, Parshad R, Koul S, Taneja SC, Qazi GN (2001) Purification and characterisation of an ester hydrolase from a strain of Arthrobacter species: its application in asymmetrisation of 2-benzyl-1, 3-propanediol acylates. Bioorg Med Chem 9:269–273

    Article  CAS  Google Scholar 

  43. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  44. Yilmaz E, Can K, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic Naproxen methyl ester. Bioresource Technol 102:499–506

    Article  CAS  Google Scholar 

  45. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  46. Liu X, Guan Y, Shen R, Liu H (2005) Immobilization of lipase onto micron-size magnetic beads. J Chromatogr B 822:91–97

    Article  CAS  Google Scholar 

  47. Faber K, Ottolina G, Riva S (1993) Selectivity-enhancement of hydrolase reactions. Biocatalysis 8:91–132

    Article  CAS  Google Scholar 

  48. Arica MY (2000) Epoxy-derived pHEMA membrane for use bioactive macromolecules immobilization: covalently bound urease in a continuous model system. J Appl Polym Sci 77:2000–2008

    Article  CAS  Google Scholar 

  49. Arica MY, Bayramoglu G (2004) Reversible immobilization of tyrosinase onto polyethyleneimine grafted and Cu(II) chelated poly(HEMA-co-GMA) reactive membrane. J Mol Catal B Enzym 27:255–265

    Article  Google Scholar 

  50. Phadtare SD, Britto V, Pundle A, Prabhune A, Sastry M (2004) Invertase-lipid biocomposite films: preparation, characterization, and enzymatic activity. Biotechnol Progr 20:156–161

    Article  CAS  Google Scholar 

  51. Tang ZX, Qian JQ, Shi LE (2007) Characterizations of immobilized neutral lipase on chitosan nano-particles. Mater Lett 61:37–40

    Article  CAS  Google Scholar 

  52. Ozmen EY, Sezgin M, Yilmaz M (2009) Synthesis and characterization of cyclodextrin-based polymers as a support for immobilization of Candida rugosa lipase. J Mol Catal B Enzym 57:109–114

    Article  CAS  Google Scholar 

  53. Desai PD, Dave AM, Devi S (2004) Entrapment of lipase into K-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. J Mol Catal B Enzym 31:143–150

    Article  CAS  Google Scholar 

  54. Yilmaz E, Sezgin M, Yilmaz M (2009) Immobilized copper-ion affinity adsorbent based on a cross-linked b-cyclodextrin polymer for adsorption of Candida rugosa lipase. Biocatal Biotransform 27:360–366

    Article  CAS  Google Scholar 

  55. Abrol K, Qazi GN, Ghos AK (2007) Characterization of an anion-exchange porous polypropylene hollow fiber membrane for immobilization of ABL lipase. J Biotechnol 128:838–848

    Article  CAS  Google Scholar 

  56. Kartal F, Akaya A, Kilinc A (2009) Immobilization of porcine pancreatic lipase on glycidyl methacrylate grafted poly vinyl alcohol. J Mol Catal B Enzym 57:55–61

    Article  CAS  Google Scholar 

  57. Dincer A, Telefoncu A (2007) Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. J Mol Catal B Enzym 45:10–14

    Article  CAS  Google Scholar 

  58. Li SF, Chen JP, Wu WT (2007) Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. J Mol Catal B Enzym 47:117–127

    Article  CAS  Google Scholar 

  59. Barbosa O, Ariza C, Ortiz C, Torres R (2010) Kinetic resolution of (R/S)- propranolol (1-isopropylamino-3-(1-naphtoxy)-2-propanolol) catalyzed by immobilized preparations of Candida antarctica lipase B (CAL-B). New Biotechnol 27:844–850

    Article  CAS  Google Scholar 

  60. Kazlaukas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J Org Chem 56:2656–2665

    Article  Google Scholar 

  61. Raza S, Fransson L, Hult K (2001) Enantioselectivity in Candida antarctica lipase B: a molecular dynamics study. Protein Sci 10:329–338

    Article  CAS  Google Scholar 

  62. Pereira EB, Castro HF, Moraes FF, Zanin GM (2001) Kinetic studies of lipase from Candida rugosa: a comparative study of the free and the immobilized enzyme on porous chitosan beads. Appl Biochem Biotechnol 91:739–752

    Article  Google Scholar 

Download references

Acknowledgments

I thank the Scientific Research Foundation of Selcuk University, Konya, Turkey (BAP) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, E. Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol–gel magnetic sporopollenin. Bioprocess Biosyst Eng 35, 493–502 (2012). https://doi.org/10.1007/s00449-011-0622-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0622-z

Keywords

Navigation