Skip to main content
Log in

Production and activities of chitinases and hydrophobins from Lecanicillium lecanii

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The production of chitinases and hydrophobins from Lecanicillium lecanii was influenced by the cultivation method and type of carbon source. Crude enzyme obtained from solid-substrate culture presented activities of exochitinases (32 and 51 kDa), endochitinases (26 kDa), β-N-acetylhexosaminidases (61, 80, 96 and 111 kDa). Additionally, submerged cultures produced exochitinases (32 and 45 kDa), endochitinases (10 and 26 kDa) and β-N-acetylhexosaminidases (61, 96 and 111 kDa). β-N-acetylhexosaminidases activity determined in solid-substrate culture with added chitin was ca. threefold (7.58 ± 0.57 U mg−1) higher than submerged culture (2.73 + 0.57 U mg−1). Similarly, hydrophobins displayed higher activities in solid-substrate culture (627.3 ± 2 μg protein mL−1) than the submerged one (57.4 ± 4.7 μg protein mL−1). Molecular weight of hydrophobins produced in solid-substrate culture was 7.6 kDa and they displayed surface activity on Teflon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shirai K (2006) Fungal chitinases. In: Guevara-González RG, Torres-Pacheco I (eds) Advances in agricultural and food biotechnology, Research Signpost, Kerala, pp 289–304

  2. St. Leger RJ, Joshi I, Roberts D (1998) Appl Environ Microbiol 64:709–713

    CAS  Google Scholar 

  3. Goettel MS, Koike M, Jun Kim J, Aiuchi D, Shinya R, Brodeur J (2008) Invertebr Pathol 98:256–261

    Article  CAS  Google Scholar 

  4. Wösten HAB, Willey JM (2000) Microbiology 146:767–773

    Google Scholar 

  5. Jeffs LB, Xavier IJ, Matai RE, Khachatourians GG (1999) Can J Microbiol 45:936–948

    CAS  Google Scholar 

  6. Linder MB (2009) Curr Opin Colloid Interface Sci 14:356–363

    Article  CAS  Google Scholar 

  7. Wessels JGH (1994) Annu Rev Phytopathol 32:413–437

    Article  CAS  Google Scholar 

  8. Askolin S, Nakari-Setälä T, Tenkanen M (2001) Appl Microbiol Biotechnol 57:124–130

    Article  CAS  Google Scholar 

  9. Linder M, Szilvay G, Nakari-Setälä T, Penttila M (2005) FEMS Microbiol Rev 29:877–896

    Article  CAS  Google Scholar 

  10. Ramirez-Coutiño L, Espinosa-Marquez J, Peter MG, Shirai K (2010) Bioresour Technol 101:9236–9240

    Article  Google Scholar 

  11. Barranco-Florido E, Bustamante CP, Mayorga-Reyes L, González CR, Martínez CP, Azaola A (2009) Interciencia 34:356–360

    Google Scholar 

  12. Matsumoto Y, Saucedo G, Revah S, Shirai K (2004) Proc Biochem 39:665–671

    Article  CAS  Google Scholar 

  13. Marin-Cervantes MC, Matsumoto Y, Ramírez-Coutino L, Rocha-Pino Z, Viniegra G, Shirai K (2008) Proc Biochem 43:24–32

    Article  CAS  Google Scholar 

  14. Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Res Microbiol 149:289–300

    Article  CAS  Google Scholar 

  15. Liu BL, Kao PM, Tzeng YM, Feng KC (2003) Enzyme Microb Technol 33:410–415

    Article  CAS  Google Scholar 

  16. Barranco-Florido E, Alatorre R, Gutiérrez M, Viniegra G, Saucedo G (2002) Enzyme Microbiol Technol 30:10910–10915

    Article  Google Scholar 

  17. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  18. Trudel J, Asselin A (1989) Anal Biochem 178:362–366

    Article  CAS  Google Scholar 

  19. Tronsmo A, Harman GE (1993) Anal Biochem 208:74–79

    Article  CAS  Google Scholar 

  20. Vigueras G, Shirai K, Martins D, Franco TT, Fleuri LF, Revah S (2008) Appl Microbiol Biotechnol 80:147–154

    Article  CAS  Google Scholar 

  21. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  22. Dynesen J, Nielsen J (2003) Biotechnol Prog 19:1049–1052

    Article  CAS  Google Scholar 

  23. Lu ZX, Laroche A, Huang HC (2005) Can J Microbiol 51:1045–1055

    Article  CAS  Google Scholar 

  24. Vigueras G, Arriaga S, Shirai K, Morales M, Revah S (2009) Biotechnol Lett 31:1203–1209

    Article  CAS  Google Scholar 

  25. de Vocht ML, Wösten HAB, Wessels JGH (2001) Method of treating a surface of an object with a hydrophobin-containing solution. WO 01/57528

  26. Calonje M, Bernardo D, Novaes LM, García M (2002) Can J Microbiol 48:1030–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged to CONACYT for the research funding (Project Number 105628) and for PhD scholarship grant (ZRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Shirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha-Pino, Z., Vigueras, G. & Shirai, K. Production and activities of chitinases and hydrophobins from Lecanicillium lecanii . Bioprocess Biosyst Eng 34, 681–686 (2011). https://doi.org/10.1007/s00449-011-0517-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0517-z

Keywords

Navigation