Skip to main content
Log in

Characterization of Thermotolerant Chitinase from the Strain Cohnella sp. IB P-192 and Its Application for the Production of Bioactive Chitosan Oligomers

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Thermostable exochitinase was purified from a culture medium of a moderately thermophilic strain Cohnella sp. IB-P192 via ultrafiltration, affinity sorption, and hydrophobic chromatography and was then characterized. Enzyme synthesis was induced by colloidal chitin from carb shells. It reached the highest level at 50°C in 72 h of submerged cultivation. The molecular weight of the purified chitinase as determined with SDS-PAGE was 69 kDa. The enzyme had pH and temperature optima of 7.5 and 70°C, respectively. It retained 100% activity under 65°C and was stable at a pH of 5–10.5. The Michaelis–Menten constant and specific Vmax of the purified chitinase were 0.83 mg × mL–1 and 116.75 μM-eqv × mL–1 × min–1 × mg–1, respectively. The enzyme was inhibited by Ag+ and Hg+2 cations and insignificantly inhibited by 1 mM Cu+2 and Ni+2, while 1 mM Mn+2, Ca+2 and Co+2 cations and Tween-80 increased its activity. The chitinase hydrolyzed specific substrate according to the exomechanism of substrate hydrolysis, forming (GlcNAc)2 as main reaction product and it functioned as N-acetyl-β-D-glucosaminidase at a later stage of hydrolysis (3–4 h). The highest rate of chitosan hydrolysis by the enzyme was recorded at a deacetylation degree (DD) of 50% at 70°C and an [E]/[S] ration of 1 : 60. The fungicidal effect of produced chitosan oligomers depended on the DD of the original polymer and most strongly increased under the destruction of the chitosan with a DD of 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Haki, G.D. and Rakshit, S.K., Bioresour. Technol., 2003, vol. 89, no. 1, pp. 17–34. https://doi.org/10.1016/s0960-8524(03)00033-6

    Article  CAS  PubMed  Google Scholar 

  2. Vieille, C. and Zeikus, G.J., Microbiol. Mol. Biol. Rev., 2001, vol. 65, no. 1, pp. 1–43. https://doi.org/10.1128/MMBR.65.1.1-43.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zeldes, B.M., Keller, M.W., Loder, A.J., Straub, C.T., Adams, M.W.W., and Kelly, R.M., Front. Microbiol., 2015, vol. 6, p. 1209. https://doi.org/10.3389/fmicb.2015.01209

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mathew, G.M., Madhavan, A., Arun, K.B., Sindhu, R., Binod, P., Singhania, R.R., Sukumaran, R.K., and Pandey, A., Appl. Biochem. Biotechnol., 2021, vol. 193, no. 1, pp. 142–164. https://doi.org/10.1007/s12010-020-03416-5

    Article  CAS  PubMed  Google Scholar 

  5. Kumar, M., Vivekanand, V., and Pareek, N., Environmental Microbiology and Biotechnology, Singh, A., Srivastava, S., Rathore, D., and Pant, D., Eds., Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-6021-7_7

    Book  Google Scholar 

  6. Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M., and Moriguchi, M., Appl. Environ. Microbiol., 1998, vol. 64, no. 9, pp. 3397–402. https://doi.org/10.1128/AEM.64.9.3397-3402.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liang, T.-W., Chen, Y.-J., Yen, Y.-H., and Wang, S.-L., Process. Biochem., 2007, vol. 42, no. 4, pp. 527–534. https://doi.org/10.1016/j.procbio.2006.10.005

    Article  CAS  Google Scholar 

  8. Kumar, A., Kumar, D., George, N., Sharma, P., and Gupta, N., Int. J. Biol. Macromol., 2018, vol. 109, pp. 263–272. https://doi.org/10.1016/j.ijbiomac.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  9. Liaqat, F. and Eltem, R., Carbohydr. Res., 2018, vol. 184, pp. 243–259. https://doi.org/10.1016/j.carbpol.2017.12.067

    Article  CAS  Google Scholar 

  10. Hobel, C.F., Hreggvidsson, G.O., Marteinsson, V.T., Bahrani-Mougeot, F., Einarsson, J.M., and Kristjansson, J.K., Extremophiles, 2005, vol. 9, no. 1, pp. 53–64. https://doi.org/10.1007/s00792-004-0422-3

    Article  CAS  PubMed  Google Scholar 

  11. Krolicka, M., Hinz, S.W.A., Koetsier, M.J., Joosten, R., Eggink, G., Broek, L.A.M., and Boeriu, C.G., J. Agric. Food Chem., 2018, vol. 66, no. 7 P, pp. 1658–1669. https://doi.org/10.1021/acs.jafc.7b04032

  12. Xu, P., Ni, Z.-F., Zong, M.-H., Ou, X.-Y., Yang, J.-G., and Lou, W.-Y., Int. J. Biol. Macromol., 2020, vol. 150, pp. 9–15. https://doi.org/10.1016/j.ijbiomac.2020.02.033

    Article  CAS  PubMed  Google Scholar 

  13. Takayanagi, T., Ajisaka, K., Takiguchi, Y., and Shimahara, K., Biochim. Biophys. Acta, 1991, vol. 1078, no. 3, pp. 404–410. https://doi.org/10.1016/0167-4838(91)90163-t

    Article  CAS  PubMed  Google Scholar 

  14. Toharisman, A., Suhartono, M.T., Spindler-Barth, M., Hwang, J.-K., and Pyun, Y.-R., J. Microbiol. Biotechnol., 2005, vol. 21, no. 5, pp. 733–738. https://doi.org/10.1007/s11274-004-4797-1

    Article  CAS  Google Scholar 

  15. Asmani, K.L., Bouacem, K., Ouelhadj, A., Yahiaoui, M., Bechami, S., Mechri, S., Jabeur, F., Taleb-Ait Menguellet, K., and Jaouadi, B., Carbohydr. Res., 2020, vol. 495, art. 108089. https://doi.org/10.1016/j.carres.2020.108089

    Article  CAS  PubMed  Google Scholar 

  16. Kämpfer, P., Rosselló-Mora, R., Falsen, E., Busse, H.J., and Tindall, B.J., Int. J. Syst. Evol. Microbiol., 2006, vol. 56, pt. 4, pp. 781–786. https://doi.org/10.1099/ijs.0.63985-0

    Article  CAS  PubMed  Google Scholar 

  17. Yoon, M.H., Ten, L.N., and Im, W.T., J. Microbiol. Biotechnol., 2007, vol. 17, no. 6, pp. 913–918.

    CAS  PubMed  Google Scholar 

  18. Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K.M., Hughes, S.R., Christopher, L.P., and Sani, R.K., Bioresour. Technol., 2010, vol. 101, no. 22, pp. 8798–8806. https://doi.org/10.1016/j.biortech.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  19. Golaki, B.P., Aminzadeh, S., Karkhane, A.A., Yakhchali, B., Farrokh, P., Khaleghinejad, S.H., Tehrani, A.A., and Mehrpooyan, S., Protein Expr. Purif., 2015, vol. 109, pp. 120–126. https://doi.org/10.1016/j.pep.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Mosallatpour, S., Aminzadeh, S., Shamsara, M., and Hajihosseini, R., Sci. Rep., vol. 9, no. 1, art. 19062. https://doi.org/10.1038/s41598-019-55587-9

  21. Saghian, R., Mokhtari, E., and Aminzadeh, S., Sci. Rep., 2021, vol. 11, no. 1, p. 4573. https://doi.org/10.1038/s41598-021-84267-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aliabadi, N., Aminzadeh, S., Karkhane, A.A., and Haghbeen, K., Braz. J. Microbiol., 2016, vol. 47, no. 4, pp. 931–940. https://doi.org/10.1016/j.bjm.2016.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergey’s Manual of Systematic Bacteriology, vol. 3: The Firmicutes, Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Rainey, F.A., Schleifer, K.-H., and Whitman, W., Eds., Springer, 2009, 2nd ed.

  24. Manual of Methods for General Bacteriology, Gerhardt, P., Murray, R.G.E., Costilow, R.N., Eds., Washington, DC: ASM, 1981.

    Google Scholar 

  25. Wilson, K., Curr. Protoc. Mol. Biol., 2001, vol. 56, no. 1, pp. 2.4.1–2.4.5. https://doi.org/10.1002/0471142727.mb0204s56

  26. Lane, D.J., in Nucleic Acid Techniques in Bacterial Systematic, Stackebrandt, E. and Goodfellow, M., Eds., New York: Wiley, 1991, pp. 115–175.

    Google Scholar 

  27. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., Mol. Biol. Evol., 2018, vol. 35, no. 6, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Safina, V.R., Melentiev, A.I., Galimzyanova, N.F., Gilvanova, E.A., Kuzmina, L.Yu., Lopatin, S.A., Varlamov, V.P., Baymiev, A.H., and Aktuganov, G.E., Appl. Biochem. Microbiol., 2021, vol. 57, no. 5, pp. 626–635. https://doi.org/10.1134/S0003683821050124

    Article  CAS  Google Scholar 

  29. Hëlisto, P., Aktuganov, G., Galimzianova, N., Melentjev, A., and Korpela, T., J. Chromatogr. B Biomed. Sci. Appl., 2001, vol. 758, no. 2, pp. 197–205. https://doi.org/10.1016/s0378-4347(01)00181-5

    Article  PubMed  Google Scholar 

  30. Aktuganov, G.E., Galimzyanova, N.F., Teregulova, G.A., and Melent’ev, A.I., Appl. Biochem. Microbiol., 2016, vol. 52, no. 5, pp. 531–536. https://doi.org/10.1134/S0003683816050021

    Article  CAS  Google Scholar 

  31. Cho, E.A., Lee, J.S., Lee, K.C., Jung, H.C., Pan, J.G., and Pyun, Y.R., Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pt. 12, pp. 2902–2907. https://doi.org/10.1099/ijs.0.64844-0

    Article  CAS  PubMed  Google Scholar 

  32. Kudryashova, E.B., Karlyshev, A.V., Ariskina, E.V., Streshinskaya, G.M., Vinokurova, N.G., Kopitsyn, D.S., and Evtushenko, L.I., Int. J. Syst. Evol. Microbiol., 2018, vol. 68, no. 9, pp. 2912–2917. https://doi.org/10.1099/ijsem.0.002919

    Article  CAS  PubMed  Google Scholar 

  33. Yahiaoui, M., Bouacem, K., Harir, M., Asmani, K., Mechri, S., and Jaouadi, B., in Proc. MOL2NET, Basel: MDPI by MOL2NET, 2021, vol. 6. https://doi.org/10.3390/mol2net-07-09377

  34. Fu, X., Yan, Q., Yang, S., Yang, X., Guo, Y., and Jiang, Z., Biotechnol. Biofuels, 2014, vol. 7, p. 174. https://doi.org/10.1186/s13068-014-0174-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tran, T.N., Doan, C.T., Nguyen, M.T., Nguyen, V.B., Vo, T.P.K., Nguyen, A.D., and Wang, S.L., Polymers (Basel), 2019, vol. 11, no. 10, p. 1600. https://doi.org/10.3390/polym11101600

    Article  CAS  PubMed Central  Google Scholar 

  36. Sørlie, M., Horn, S.J., Vaaje-Kolstad, G., and Eijsink, V.G.H., React. Funct. Polym., 2020, vol. 148, art. 104488. https://doi.org/10.1016/j.reactfunctpolym.2020.104488

    Article  CAS  Google Scholar 

  37. Varlamov, V.P., Il’ina, A.V., Shagdarova, B.Ts., Lun’kov, A.P., and Mysyakina, I.S., Usp. Biol. Khim., 2020, vol. 60, pp. 317–368.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Agidel Center for Collective Use of the Ufa Federal Research Center of the Russian Academy of Sciences was used in the research.

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 19-34-90119 as and the state assignment of the Ministry of Education and Science of Russia, no. 075-00326-19-00 on topic no. АААА-А18-118022190098-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Aktuganov.

Ethics declarations

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilvanova, E.A., Aktuganov, G.E., Safina, V.R. et al. Characterization of Thermotolerant Chitinase from the Strain Cohnella sp. IB P-192 and Its Application for the Production of Bioactive Chitosan Oligomers. Appl Biochem Microbiol 58, 143–154 (2022). https://doi.org/10.1134/S0003683822020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683822020077

Keywords:

Navigation