Skip to main content
Log in

Microbial degradation of pyridine and α-picoline using a strain of the genera Pseudomonas and Nocardia sp.

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Biodegradation of pyridine and α-picoline (2-methyl pyridine) by Pseudomonas pseudoalcaligenes-KPN and Nocardia sp. isolated from garden soil were investigated in batch culture experiments. Pyridine and α-picoline (50–200 mg L−1) were used as sole source of carbon and energy in the investigation. The kinetic constants were evaluated for pyridine and α-picoline degradation under optimized nutritional (C, N, P) and environmental (pH, temperature) conditions. The values of bio-kinetic constant obtained in the present investigation indicate the usefulness of both the cultures for treatment of waste containing pyridine and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Da:

effective dispersion coefficient (m2 s−1)

L :

characteristic length (m)

C:N ratio:

carbon to nitrogen ratio

CMAS:

completely mixed activated sludge

K d :

decay coefficient (day−1)

K s :

half saturation rate constant (mg L−1)

O.D:

optical density

Peclet number:

UL/Da (U = superficial velocity m s−1)

USEPA:

United States Environmental Protection Agency

UV–Vis spectrophotometer:

Ultra violet–visible spectrophotometer

Y :

yield coefficient (g biomass g substrate−1)

μ :

growth rate constant (day−1)

μmax :

maximum specific growth rate constant (day−1)

References

  1. Adav SS, Lee DJ, Ren NQ (2007) Biodegradation of pyridine using aerobic granules in the presence of phenol. Wat Res 41:2903–2910

    Article  CAS  Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1987) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  3. Doughlas MC (1976) Von nostrands scientific encyclopedia. Von Nostrand Rein Hold Company, New York

  4. Edwards U, Rogall T, Blocker H, Emde M, Böttger EC (1989) Isolation and direct nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  5. Feasibility studies on treatment of wastewater containing pyridine generated at M/s Jubilant Organosys Limited (JOL), Bhartiyagram, J. P. Nagar, UP (2004), Technical report, National Environmental Engineering Research Institute, September

  6. Fetzner S (1998) Bacterial degradation of pyridine, indole, quinoline and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49:237–250

    Article  CAS  Google Scholar 

  7. Foght JM, Westlake DWS (1988) Degradation of polycyclic aromatic hydrocarbons and aromatic heterocycles by a Pseudomonas species. Can J Microbiol 34:1135–1141

    CAS  Google Scholar 

  8. Gupta RC, Shukla OP (1975) Microbial metabolism of 2-hydroxypyridine. Ind J Biochem Biophys 12:296–298

    CAS  Google Scholar 

  9. Healy JB, Langlois GW, Daughton CG (1985) Biooxidation of organic solutes in oil shale wastewaters. Wat Res 19:1429–1435

    Article  CAS  Google Scholar 

  10. Houghton C, Cain RB (1972) Microbial metabolism of the pyridine ring. Biochem J 130:879–893

    CAS  Google Scholar 

  11. Kaiser JP, Feng Y, Bollag JM (1996) Microbial metabolism of pyridine, quinoline, acridine and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498

    CAS  Google Scholar 

  12. Koch B, Ostermann H, Hoke H, Hempel DC (1991) Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen containing aromatic compounds. Wat Res 25:1–8

    Article  CAS  Google Scholar 

  13. Korosteleva LA, Kost AN, Vorobeva LI, Modyanova LV, Terentev PB, Kulikov NS (1981) Microbiological degradation of pyridine and 3-methylpyridine. Appl Biochem Microbiol 17:276

    Google Scholar 

  14. Krieg NR, Holt JG (eds) (1984) Bergeys manual of systematic bacteriology. Williams and Wilkins, USA

  15. Lee ST, Rhee SK, Lee GM (1994) Biodegradation of pyridine by freely suspended and immobilized Pimelobacter species. Appl Microbiol Biotechnol 41:652–657

    Article  CAS  Google Scholar 

  16. Lee JJ, Rhee SK, Lee ST (2001) Degradation of 3-methylpyridine and 3-ethylpyridine by Gordonia nitida LE31. Appl Environ Microbiol 67:4342–4345

    Article  CAS  Google Scholar 

  17. Leenheer JA, Noyes TI, Stuber HA (1982) Determination of polar organic solutes in oil shale retort water. Environ Sci Technol 16:714–723

    Article  CAS  Google Scholar 

  18. Lodha B, Bhadane R, Patel B, Killedar D (2008) Biodegradation of pyridine by a isolated bacterial strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation. Biodegradation. doi:10.1007/s10532-008-9176-4

  19. Mathur AK, Majumdar CB, Chatterjee S, Roy P (2008) Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus. J Haz Mat. Available online at http://www.sciencedirect.com

  20. Milleman RE, Birge WJ, Black JA, Cushman RM, Daniels KL, Franco PJ, Giddings JM, McCarthy JF, Stewart AJ (1984) Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. Trans Am Fish Soc 113:74

    Article  Google Scholar 

  21. Padoley KV (2002) Treatment of industrial wastewater containing heterocyclic bases. PhD Thesis, Nagpur University

  22. Padoley KV, Rajvaidya AS, Subbarao TV, Pandey RA (2006) Biodegradation of pyridine in a completely mixed activated sludge process. Bioresource Technol 97:1225–1236

    Article  CAS  Google Scholar 

  23. Quail BE, Hill GA (1991) A packed column bioreactor for phenol degradation: model and experimental verification. J Chem Technol Biotechnol 52:545–557

    CAS  Google Scholar 

  24. Rhee SK, Lee GM, Yoon JH, Park YH, Bae HS, Lee ST (1997) Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium. Appl Environ Microbiol 63:2578–2585

    CAS  Google Scholar 

  25. Rhee SK, Lee KY, Chung JC, Lee ST (1997) Degradation of pyridine of Nocardioides sp. strain OS4 isolated from the oxic zone of a spent shale column. Can J Microbiol 43:205–209

    CAS  Google Scholar 

  26. Ronen Z, Bollag JM (1991) Pyridine metabolism by a denitrifying bacterium. Can J Microbiol 37:725–729

    CAS  Google Scholar 

  27. Rothenburger S, Atlas RM (1993) Hydroxylation and biodegradation of 6-methylquinoline by Pseudomonads in aqueous and nonaqueous immobilized-cell bioreactors. Appl Environ Microbiol 59:2139–2144

    CAS  Google Scholar 

  28. Saravanan P, Pakshirajan K, Saha P (2008) Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technol 99:205–209

    Article  CAS  Google Scholar 

  29. Shukla OP, Kaul SM (1986) Microbial transformation of pyridine-N-oxide and pyridine by Nocardia sp. Can J Microbiol 32:330

    Article  CAS  Google Scholar 

  30. Shukla OP (1984) 8-Hydroxycoumarin: an intermediate in the microbial transformation of quinoline. Curr Sci 53:1145–1147

    Google Scholar 

  31. Shukla OP (1986) Microbial transformation of quinoline by a Pseudomonas. Appl Environ Microbiol 51:1332–1342

    CAS  Google Scholar 

  32. Sims GK, O’Loughlin EJ (1989) Degradation of pyridines in the environment. Crit Rev Environ Ctrl 4:311–340

    Google Scholar 

  33. Sims GK, Sommers LE (1986) Biodegradation of pyridine derivatives in soil suspensions. Environ Toxicol Chem 5:503

    Article  CAS  Google Scholar 

  34. Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) (1986) Bergeys manual of systematic bacteriology. Williams and Wilkins, USA (2)

  35. Standard Methods for the examination of water and wastewater 20th edn (1998) American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA

  36. Steven BH, Robert ES (1984) Emission of organic air pollutants from shale oil wastewaters. Environ Sci Technol 18:483–490

    Article  Google Scholar 

  37. Stuerner DH, Ng DJ, Morris CJ (1982) Organic contaminants in ground water near an underground coal gasification site in northeastern Wyoming. Environ Sci Technol 16:582–587

    Article  Google Scholar 

  38. Sutton SD, Pfaller SL, Shann JR, Warshawskii D, Kinkle BK, Vestal JR (1996) Aerobic biodegradation of 4-methylquinoline by a soil bacterium. Appl Environ Microbial 62:2910–2914

    CAS  Google Scholar 

  39. Uma B, Sandhya S (1997) Pyridine degradation and heterocyclic nitrification by Bacillus coagulans. Can J Microbiol 43:595–598

    Article  CAS  Google Scholar 

  40. Uma B, Sandhya S (1998) Kinetics of pyridine degradation along with toluene and methylene chloride with Bacillus sp. in packed bed reactor. Bioprocess Eng 18:303–305

    CAS  Google Scholar 

  41. Verschueren K (1977) Handbook of environmental data on organic chemicals. Rein hold company, New York

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Director, NEERI for his kind permission for publishing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padoley, K.V., Mudliar, S.N. & Pandey, R.A. Microbial degradation of pyridine and α-picoline using a strain of the genera Pseudomonas and Nocardia sp.. Bioprocess Biosyst Eng 32, 501–510 (2009). https://doi.org/10.1007/s00449-008-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0270-0

Keywords

Navigation