Skip to main content
Log in

Remote engineering for a cheese whey biorefinery: an Internet-based application for process design, economic analysis, monitoring, and control of multiple plant sites

  • original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The proteolysis of cheese whey with the aid of immobilized enzymes is an attractive alternative for this by-product of the dairy industry. Among some possible applications for whey protein hydrolysates, one may cite their use as protein source for individuals with reduced capacity of digestion, or with genetic metabolic disorders (phenylketonuria patients, for instance). The multipurpose plant that processes whey is named here as a cheese whey biorefinery. This work presents the remote control and monitoring of the whey biorefineries using the Internet. In an integrated environment, the web application also enables simulation and economic analyses of the process. This technology might allow small companies to access a remote “engineering centre”, with know-how on plant design and advanced control techniques. The idea can also be extended to large dairy companies, providing the remote control of geographically spread sites of production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Clemente A (2000) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Technol 11:254–262

    Article  CAS  Google Scholar 

  2. Schmidt DG, Poll JK (1991) Enzymatic hydrolysis of whey proteins––hydrolysis of alpha-lactalbuin and beta-lactoglobulin in buffer solutions by proteolytic enzymes. Neth Milk Dairy J 45:225–240

    CAS  Google Scholar 

  3. Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  4. Tardioli PW, Pedroche J, Giordano RLC et al (2003) Hydrolysis of proteins by immobilized–stabilized Alcalase–glyoxyl agarose. Biotechnol Prog 19:352–360

    Article  CAS  Google Scholar 

  5. Tardioli PW, Fernandez-Lafuente R, Guisán JM et al (2003) Design of a new immobilized–stabilized carboxypeptidase a derivative for production of aromatic free hydrolysates of proteins. Biotechnol Prog 19:565-574

    Article  CAS  Google Scholar 

  6. Galvão CMA, Silva AFS, Custódio MF et al (2001) Controlled hydrolysis of cheese whey proteins using trypsin and α-Chymotrypsin. Appl Biochem Biotechnol 91:761–776

    Article  Google Scholar 

  7. Farid SS, Washbrook J, Titchener-Hooker NJ (2007) Modeling biopharmaceutical manufacture: design and implementation of SimBiopharma. Comput Chem Eng 31:1141–1158

    Article  CAS  Google Scholar 

  8. Gani R, Grossmann IE (2007) Process system engineering and CAPE––what next? In: 17th European symposium on computer aided process engineering, Bucharest

  9. Al-Ali AR, Al-Rousan M (2004) Java-based home automation system. IEEE Trans Consum Electron 50:498–504

    Article  Google Scholar 

  10. Aktan B, Bohus CA, Crowl LA et al (1996) Distance learning applied to control engineering laboratories. IEEE Trans Educ 39:320–326

    Article  Google Scholar 

  11. Yang SH, Dai C, Knott RP (2007) Remote maintenance of control system performance over the Internet. Control Eng Pract 15:533–544

    Article  Google Scholar 

  12. Singh P, Seto K (2002) Analyzing APC performance. Chem Eng Prog 98:60–66

    CAS  Google Scholar 

  13. Churms CL, Prozesky VM, Springhorn KA (1999) The remote control of nuclear microprobes over the Internet. Nucl Instrum Methods B 158:124–128

    Article  CAS  Google Scholar 

  14. Shi JZ, Gu F, Goulding P et al (2007) Integration of multiple platforms for real-time remote model-based condition monitoring. Comput Ind 58:531–538

    Article  Google Scholar 

  15. Yang SH, Chen X, Alty JL (2003) Design issued and implementation of internet-based control systems. Control Eng Pract 11:709–720

    Article  Google Scholar 

  16. Kim S, Heller M (2006) Emerging cyberinfrastructure: challenges for the chemical process control community. Comput Chem Eng 30:1497–1501

    Article  CAS  Google Scholar 

  17. Bhat N, McAvoy TJ (1990) Use of neural nets for dynamic modeling and control of chemical process systems. Comput Chem Eng 14:573–583

    Article  CAS  Google Scholar 

  18. Eerikainen T, Linko P, Linko S et al (1993) Fuzzy-logic and neural-network applications in food science and technology. Trends Food Sci Technol 4:237–242

    Article  Google Scholar 

  19. Zander HJ, Dittmeyer R, Wagenhuber J (1999) Dynamic modeling of chemical reaction systems with neural networks and hybrid models. Chem Eng Technol 22:571–574

    Article  CAS  Google Scholar 

  20. Montague G, Morris JN (1994) Neural network contributions in biotechnology. Trends Biotechnol 12:312–324

    Article  CAS  Google Scholar 

  21. Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Berlin

    Google Scholar 

  22. Guisán JM, Bastida A, Cuesta C et al (1999) Immobilization–stabilization of α-chymotrypsin by covalent attachment to aldehyde–agarose gels. Biotechnol Bioeng 38:1144–1152

    Article  Google Scholar 

  23. Pinto GA, Giordano RLC, Giordano RC (2007) Neural network inference of molar mass distributions of peptides during tailor-made enzymatic hydrolysis of cheese whey: effects of pH and temperature. Appl Biochem Biotechnol 143:142–152

    Article  CAS  Google Scholar 

  24. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall, New Jersey

    Google Scholar 

  25. Hagan MT, Menhaj MB (1994) Training feedfoward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5:989–993

    Article  CAS  Google Scholar 

  26. Sánchez J, Dormido S, Pastor R et al (2004) A Java/Matlab-based environment for remote control system laboratories: illustrated with an inverter pendulum. IEEE Trans Educ 47:321–329

    Article  Google Scholar 

  27. Deitel HM, Deitel PJ (2002) Java how to program. Prentice-Hall, New Jersey

    Google Scholar 

  28. Apache Tomcat (2007) The Apache software foundation. http://tomcat.apache.org

  29. Müller S, Waller H (1999) Efficient integration of real-time hardware and web based services into Matlab. http://jmatlink.sourceforge.net/docs/ESS99.pdf

  30. MySQL (2005) Mysql AB: the world’s most popular open source database. http://www.mysql.com

  31. Biegler LT, Grossmann IE, Westerberg AW (1997) Systematic methods of chemical process design. Prentice-Hall, New Jersey

    Google Scholar 

  32. Gekas V, Lopez-Leiva M (1985) Hydrolysis of lactose: a literature review. Process Biochem 20:2–12

    CAS  Google Scholar 

  33. Peters MS, Timmerhaus KD (1991) Plant design and economics for chemical engineers. McGraw-Hill, New York

    Google Scholar 

  34. Turton R, Boilie RC, Whiting WB et al (1998) Analysis, synthesis and design of chemical processes. Prentice-Hall, New Jersey

    Google Scholar 

  35. Sousa R, Lopes GP, Pinto GA et al (2004) GMC-fuzzy control of pH during enzymatic hydrolysis of cheese whey proteins. Comput Chem Eng 28:1661–1672

    Article  CAS  Google Scholar 

  36. Mateo C, Palomo JM, Fuentes M et al (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of protein. Enzyme Microb Technol 39:274–280

    Article  CAS  Google Scholar 

  37. Scilab (2008) The open source platform for numerical computation. http://www.scilab.org

  38. Peters RH (2005) Economic aspects of cheese making as influenced by whey processing options. Int Dairy J 15:537–545

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research funding agencies FAPESP, FAPESP/Tidia-Kyatera, CNPq, and PADCT/CNPq for support, Cooperativa de Lacticínios de São Carlos (Brazil) for the gift of the cheese whey, and Novo Nordisk do Brasil for the donation of the enzyme Alcalase®.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, G.A., Giordano, R.L.C. & Giordano, R.C. Remote engineering for a cheese whey biorefinery: an Internet-based application for process design, economic analysis, monitoring, and control of multiple plant sites. Bioprocess Biosyst Eng 32, 69–78 (2009). https://doi.org/10.1007/s00449-008-0222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0222-8

Keywords

Navigation