Skip to main content
Log in

Neural Network Inference of Molar Mass Distributions of Peptides during Tailor-Made Enzymatic Hydrolysis of Cheese Whey: Effects of pH and Temperature

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The fine-tuning of the enzymatic hydrolysis of proteins may provide a pool of peptides with predefined molar mass distributions. However, the complex mixture of molecules (peptides and amino acids) that results after the proteolysis of cheese whey turns unfeasible the assessment of individual species. In this work, a hybrid kinetic model for the proteolysis of whey by alcalase®, multipoint-immobilized on agarose, is presented, which takes into account the influence of pH (8.0–10.4) and temperature (40–55 °C) on the activity of the enzyme. Five ranges of peptides’ molar mass have their reaction rates predicted by neural networks (NNs). The output of NNs trained for constant pH and temperatures was interpolated, instead of including these variables in the input vector of a larger NN. Thus, the model complexity was reduced. Coupled to differential mass balances, this hybrid model can be employed for the online inference of peptides’ molar mass distributions. Experimental kinetic assays were carried out using a pH-stat, in a laboratory-scale (0.03 L) batch reactor. The neural-kinetic model was integrated to a supervisory system of a bench-scale continually stirred tank reactor (0.5 L), providing accurate predictions during validation tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAEE:

N-benzoyl-l-arginine ethyl ester

C i :

Mass concentration of the pseudocomponent i (\({\text{g}}_{{{\text{Protein}}}} \,{\text{L}}_{{{\text{Suspension}}}} ^{{ - 1}} \))

\( C^{{\text{F}}}_{{\text{5}}} \) :

Mass concentration of the reactor feed, concentrated cheese whey (\({\text{g}}_{{{\text{Protein}}}} \,{\text{L}}_{{{\text{Suspension}}}} ^{{ - 1}} \))

E :

Concentration of alcalase® (UBAEE L−1)

MM i :

Molar mass of pseudocomponent i (Da)

q F :

Volumetric flow rate of the reactor feed (L min−1)

q C :

Volumetric flow rate of base used to control the reaction pH (L min−1)

r i :

Reaction rate of pseudocomponent i (\({\text{g}}_{{{\text{Protein}}}} \,{\text{U}}_{{{\text{BAEE}}}} ^{{ - 1}} \;\min ^{{ - 1}} \))

T :

Temperature of reaction (°C)

V :

Volume of the system, that is, concentrated cheese whey plus immobilized alcalase® (L)

References

  1. Siso, M. I. G. (1996). Bioresearch Technology, 57, 1–11.

    Article  Google Scholar 

  2. Korhonen, H. (2002). International Journal of Dairy Technology, 55, 79–88.

    Article  CAS  Google Scholar 

  3. Marwaha, S. S., & Kennedy, J. F. (1988). International Journal of Food Science & Technology, 23, 323–336.

    Article  Google Scholar 

  4. Morr, C. V., & Ha, E. Y. W. (1993). Whey protein concentrates and isolates: Processing and functional properties. Critical Reviews in Food Science and Nutrition, 33, 431–476.

    Article  CAS  Google Scholar 

  5. Clemente, A. (2000). Trends in Food Science & Technology, 11, 254–262.

    Article  CAS  Google Scholar 

  6. Gonzalez-Tello, P., Camacho, F., Jurado, E., Paez, M. P., & Guadix, E. M. (1994). Biotechnology and Bioengineering, 44, 523–528.

    Article  CAS  Google Scholar 

  7. Boudrant, J., & Cheftel, C. (1976). Biotechnology and Bioengineering, 18, 1735–1749.

    Article  CAS  Google Scholar 

  8. Mozhaev, V. V., Melik-Nubarov, N. S., Sergeeva, M. V., Sikrnis, V., & Martinek, K. (1990). Biocatalysis, 3, 179–187.

    CAS  Google Scholar 

  9. Tardioli, P. W., Pedroche, J., Giordano, R. L. C., Fernandez-Lafuente, R., & Guisan, J. M. (2003). Biotechnology Progress, 19(2), 352–360.

    Article  CAS  Google Scholar 

  10. Guisan, J. M. (1988). Enzyme and Microbial Technology, 10, 375–382.

    Article  CAS  Google Scholar 

  11. Guisán, J. M., Bastida, A., Cuesta, C., Fernandez-Lafuente, R., & Rosell, C. M. (1991). Biotechnology and Bioengineering, 38, 1144–1152.

    Article  Google Scholar 

  12. Mateo, C., Abian, O., Bernedo, M., Cuenca, E., Fuentes, M., Fernandez-Lorente, G., et al. (2005). Enzyme and Microbial Technology, 37, 456–462.

    Article  CAS  Google Scholar 

  13. Mateo, C., Palomo, J. M., Fuentes, M., Betancor, L., Grazu, V., Lopez-Gallego, F., et al. (2006) Enzyme and Microbial Technology, 39, 274–280.

    Article  CAS  Google Scholar 

  14. Tardioli, P. W., Sousa, R., Giordano, R. C., & Giordano, R. L. C. (2005). Enzyme and Microbial Technology, 36, 555–564.

    Article  CAS  Google Scholar 

  15. Silvestre, M. P. C. (1997). Food Chemistry, 60, 263–271.

    Article  CAS  Google Scholar 

  16. Gallifuoco, A., Cantarella, M., Viparelli, P., & Marucci, M. (2004). Biotechnology Progress, 20, 1430–1436.

    Article  CAS  Google Scholar 

  17. Adler-Nissen, J. (1986) Enzymatic hydrolysis of food proteins. Amsterdam: Elsevier Applied Science Publishers.

    Google Scholar 

  18. Marquez, M. C., & Vazquez, M. A. (1999). Process Biochemistry, 35, 111–117.

    Article  CAS  Google Scholar 

  19. Shi, D. Q., He, Z. M., & Qi, W. (2003). Process Biochemistry, 40, 1943–1949.

    Article  CAS  Google Scholar 

  20. Mota, M. V. T., Ferreira, I. M. P. L. V. O., Oliveira, M. B. P., Rocha, C., Teixeira, J. A., Torres, D., et al. (2006). Food Chemistry, 94, 278–286.

    CAS  Google Scholar 

  21. Eerikainen, T., Linko, P., Linko, S., Siimes, T., & Zhu, Y. H. (1993). Trends in Food Science & Technology, 4, 237–242.

    Article  Google Scholar 

  22. Zander, H. J., Dittmeyer, R., & Wagenhuber, J. (1999). Chemical Engineering & Technology, 22, 571–574.

    Article  CAS  Google Scholar 

  23. Bryjak, J., Murlikiewicz, K., Zbiciñski, I., & Stawczyk, J. (2000). Bioprocess and Biosystems Engineering, 23, 351–357.

    CAS  Google Scholar 

  24. Baughman, D. R., & Liu, Y. A. (1995). Neural networks in bioprocessing and chemical engineering. New York: Academic Press.

    Google Scholar 

  25. Haykin, S. (1999). Neural Networks: A Comprehensive foundation. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  26. Sousa, R., Resende, M. M., Giordano, R. L. C., & Giordano, R. C. (2003). Applied Biochemistry and Biotechnology, 105, 413–422.

    Article  Google Scholar 

  27. Bradstreet, R. B. (1965). The Kjeldahl method for organic nitrogen (pp. 9–88). New York: Academic Press.

    Google Scholar 

  28. Blanco, R. M., & Guisan, J. M. (1988). Enzyme and Microbial Technology, 10, 227–232.

    Article  CAS  Google Scholar 

  29. Pinto, G. A., Sousa, R., & Giordano, R. C. (2005). Brazilian Archives of Biology and Technology, 48, 151–159.

    Article  Google Scholar 

  30. Hagan, M. T., & Menhaj, M. B. (1994). IEEE Transactions on Neural Networks, 5, 989–993.

    Article  CAS  Google Scholar 

  31. Sousa, R., Lopes, G. P., Pinto, G. A., Almeida, P. I. F., & Giordano, R. C. (2004). Computers & Chemical Engineering, 28, 1661–1672.

    Article  CAS  Google Scholar 

  32. Nelles, O. (2001). Nonlinear system identification: From classical approaches to neural networks and fuzzy models. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian research funding agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Programa de Apoio ao Desenvolvimento Científico e Tecnológico/CNPq, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and the FAPESP–TIDIA–Kyatera program for support, Cooperativa de Lacticínios de São Carlos (Brazil) for the cheese whey, and Novo Nordisk do Brasil for the donation of the enzyme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto C. Giordano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, G.A., Giordano, R.L.C. & Giordano, R.C. Neural Network Inference of Molar Mass Distributions of Peptides during Tailor-Made Enzymatic Hydrolysis of Cheese Whey: Effects of pH and Temperature. Appl Biochem Biotechnol 143, 142–152 (2007). https://doi.org/10.1007/s12010-007-0039-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-0039-y

Keywords

Navigation