Skip to main content

Advertisement

Log in

Control of cultivation processes for recombinant protein production: a review

  • Mini Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The current state-of-the-art in control of cultivation processes for recombinant protein production is examined including the quantitative knowledge that can be activated for this purpose and the measurement techniques that can be employed for control at industrial manufacturing sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aarts RJ, Suviranta A, Rauman-Aalto P, Linko P (1990) An expert system in enzyme production control. Food Biotechnol 4:301–315

    Article  CAS  Google Scholar 

  2. Aiba S (1979) Review of process control and optimization in fermentation. Biotechnol Bioeng Symp Ser 9:269–281

    Google Scholar 

  3. Åkesson M, Nordberg-Karlsson E, Hagander P, Axelsson JP, Tocaj A (1999) On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol Bioeng 64(5):590–598

    Article  Google Scholar 

  4. Åkesson M, Hagander P, Axelsson JP (2001a) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73(3):223–230

    Article  Google Scholar 

  5. Åkesson M, Hagander P, Axelsson JP (2001b) Probing control of fed-batch cultures: analysis and tuning. Control Eng Pract 9(7):709–723

    Article  Google Scholar 

  6. Alvarez A, Simutis R (2004) Application of Kalman filter algorithms in a GMC control strategy for fed-batch cultivation process. Informadines Technologijos ir Valdymas 1:7–12

    Google Scholar 

  7. Andersen K, von Meyenburg K (1980) Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bact 144:114–123

    CAS  Google Scholar 

  8. Arndt M, Hitzmann B (2004) Kalman filter-based glucose control at small set points during fed-batch cultivation of Saccharomyces cerevisiae. Biotechnol Progr 20:377–383

    Article  CAS  Google Scholar 

  9. Astrom K, Hagglund T (2001) The future of PID control. Control Eng Pract 9:1163–1175

    Article  Google Scholar 

  10. Behrendt U, Koch S, Gooch DD, Steegmans U, Comer MJ (1994) Mass spectrometry: A tool for on-line monitoring of animal cell cultures. Cytotechnol 14:157–165

    Article  CAS  Google Scholar 

  11. Bicciato S, Bagno A, Solda M, Manfredini R, di Bello C (2002) Fermentation Diagnosis by multivariate statistical analysis. Appl Biochem Biotechnol 102/103:49–62

    Article  Google Scholar 

  12. Cannizzaro C, Valentinotti S, von Stockar U (2004) Control of yeast fed-batch process through regulation of extracellular ethanol concentration. Bioprocess Biosyst Eng 26:377–383

    Article  CAS  Google Scholar 

  13. Chattaway T, Stephanopoulos GN (1989) An adaptive state estimator for detecting contaminants in bioreactors. Biotechnol Bioeng 34:647–659

    Article  CAS  Google Scholar 

  14. Cimander C, Mandenius CF (2002) On-line monitoring of a bioprocess based on the use of a multi-analyzer system with multivariate statistical process modelling. J Chem Technol Biotechnol 77:1157–1168

    Article  CAS  Google Scholar 

  15. Claes JE, Van Impe JF (1999) On-line estimation of the specific growth rate based on viable biomass measurements, experimental validation. Bioproc Eng 21:389–395

    Article  CAS  Google Scholar 

  16. Coleman MC, Block DE (2006a) Bayesian parameter estimation with informative priors for non-linear systems. AIChE J 52/2:651–667

    Article  CAS  Google Scholar 

  17. Coleman MC, Block DE (2006b) Retrospective optimization of time-dependent fermentation control strategies using time-independent historical data. Biotechnol Bioeng 95/3:412–423

    Article  CAS  Google Scholar 

  18. Cooney CL, O’Connor GM, Sanchez-Riora F (1988) An expert system for intelligent supervisory control of fermentation process. In: 8th Int Biotechnol Symp Paris, pp 563–575 (Preprint)

  19. Davey CL (1993) The biomass monitor source book. A detailed user guide. Aber Instruments Ltd, Aberystwyth

    Google Scholar 

  20. Dedhia N, Richins R, Mesina A, Chen W (1997) Improvement in recombinant protein production in ppGpp-deficient Escherichia coli. Biotechnol Bioeng 53:379–386

    Article  CAS  Google Scholar 

  21. DeLisa MP, Chae HJ, Rao G, Weigand WA, Valdes JJ, Bentley WE (2001) Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring. Bioproc Biosyst Eng 24:83–91

    Article  CAS  Google Scholar 

  22. EMEA (2006) Reflection paper: chemical, pharmaceutical and biological information to be included in dossiers when Process Analytical Technology (PAT) is employed. European Medicines Agency, Inspections, London

  23. FDA (2004) Guidance for industry: PAT—a framework for innovative pharmaceutical manufacturing and quality assurance, FDA. http://www.fda.gov/cvm/guidance/published.html

  24. Galvanauskas V, Simutis R, Lübbert A (1997) Model-based design of biochemical processes: simulation studies and experimental tests. Biotechnol Lett 19:1043–1047

    Article  CAS  Google Scholar 

  25. Galvanauskas V, Simutis R, Lübbert A (1998) Direct comparison of four different biomass estimation techniques against conventional dry weight measurements. Process Control Qual 11:119–124

    Article  CAS  Google Scholar 

  26. Galvanauskas V, Volk N, Simutis R, Lübbert A (2004) Design of recombinant protein production processes. Chem Eng Commun 191:732–748

    Article  CAS  Google Scholar 

  27. Glassey J, Ignova M, Montague GA, Morris AJ (1994) Autoassociative neural networks in bioprocess condition monitoring. In: Proceedings of the IFAC symposium on advanced control of chemical processes. Elsevier, Oxford, pp 447–451

  28. Glassey J, Ignova M, Montague GA, Morris AJ (2000) Issues in the development of an industrial bioprocess advisory system. Trends Biotechnol 18:136–141

    Article  CAS  Google Scholar 

  29. Gnoth S, Jenzsch M, Simutis R, Lübbert, A (2006) Product formation kinetics in a recombinant protein production process, CAB-2007, IFAC. Elsevier, Amsterdam (submitted)

  30. Gnoth S, Jenzsch M, Simutis R, Lübbert A (2007) Product formation kinetics in genetically modified E. coli Bacteria: inclusion body formation. Bioproc Biosyst Eng (this issue)

  31. Gregersen L, Jørgensen SB (1999) Supervision of fed-batch fermentations. Chem Eng J 75:69–76

    Article  CAS  Google Scholar 

  32. Gvazdaitis G, Beil S, Kreibaum U, Simutis R, Havlik I, Dors M, Schneider F, Lübbert A (1994) Temperature control in fermenters: application of neural nets and feedback control in breweries. J Inst Brew UK 100:99–104

    CAS  Google Scholar 

  33. Heinzle E (1991) Mass spectrometry for on-line monitoring of biotechnical processes. Adv Biochem Eng 35:1–45

    Google Scholar 

  34. Heinzle E, Bolzern O, Dunn J, Bourne JR (1981) A porous membrane-carrier gas measurement system for dissolved gas and volatiles in fermentation systems. In: Moo Young M (ed) Advances in biotechnology. Pergamon, Oxford, pp 493–544

    Google Scholar 

  35. Heinzle E, Dunn IJ (1991) Methods and instruments in fermentation gas analysis. In: Rehm HJ, Reed G (eds) Biotechnology, 2nd edn. vol 4. In: Schuegerl K (ed) Measuring, modeling and control. VCH, Weinheim, pp 27–74

  36. Henes B, Sonnleitner B (2006) Controlled fed-batch by tracking the maximal culture capacity, Bioreaction Engineering Symposium, ESBES 6, Salzburg

  37. Henson MA (1998) Non-linear model predictive control: current status and future directions. Comp Chem Eng 23:187–202

    Article  CAS  Google Scholar 

  38. Hiden HG, Willis MJ, Tham MT, Montague GA (1999) Non-linear principal components analysis using genetic programming. Comp Chem Eng 23:413–425

    Article  CAS  Google Scholar 

  39. Hisbullah MAH, Hussain MA, Ramachandran KB (2002) Comparative evaluation of various control schemes for fed-batch fermentation. Bioproc Eng 24:309–318

    Article  CAS  Google Scholar 

  40. ICH (2006) ICH guideline for industry: pharmaceutical development, Q8

  41. Ignova M, Glassey J, Ward AC, Montague GA, Irvine TS (1995) Seed data analysis for production fermentor performance estimation. In: Munack A, Schügerl K (eds) Proceedings of the 6th international conference on computer application in biotechnology. Elsevier, Oxford, pp 53–58

    Google Scholar 

  42. Jenzsch M, Simutis R, Lübbert A (2004) Model predictive control of cultivation processes for protein production with genetically modified bacteria In: Pons, MN, van Impe, JFM (eds) Comp Appl Biotechnol, IFAC/Elsevier, pp 511–516. ISBN 0 08 044251 X

  43. Jenzsch M, Simutis R, Lübbert A (2006) Generic model control of the specific growth rate in E. coli cultivations. J Biotechnol 122:483–493

    Article  CAS  Google Scholar 

  44. Jenzsch M, Gnoth S, Beck M, Kleinschmidt M, Simutis R, Lübbert A (2006) Open loop control of the biomass concentration within the growth phase of recombinant protein production processes. J Biotechnol 127:84–94

    Article  CAS  Google Scholar 

  45. Jenzsch M, Gnoth S, Kleinschmidt M, Simutis R, Lübbert A (2006) Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile. Bioproc Biosyst Eng 29:315–321

    Article  CAS  Google Scholar 

  46. Jenzsch M, Simutis R, Eisbrenner G, Stückrath I, Lübbert A (2006) Estimation of biomass concentrations in fermentation processes for recombinant protein production. Bioproc Biosyst Eng 29(1):19–27

    Article  CAS  Google Scholar 

  47. Jenzsch M (2006) Advanced monitoring and control in microbial cultivation processes for recombinant protein production. PhD Thesis, Martin-Luther-University, Halle-Wittenberg

  48. Jenzsch M, Gnoth S, Kleinschmidt M, Simutis R, Lübbert A (2007) Improving the batch-to-batch reproducibility of microbial cultures during recombinant protein production by regulation of the total carbon dioxide production. J Biotechnol 128:858–867

    Article  CAS  Google Scholar 

  49. Junker B, Brix J, Lester M, Kardos P, Adamca J, Lynch J, Schmitt J, Salmon P (2003) Design and installation of a next generation pilot scale fermentation system. Biotechnol Prog 19:693–705

    Article  CAS  Google Scholar 

  50. Junker B, Wang HL (2006) Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol Bioeng 95/2:226–262

    Article  CAS  Google Scholar 

  51. Kramer MA (1991) Non-linear principal component analysis using auto associative neural networks. AIChE J 37(2):233–243

    Article  CAS  Google Scholar 

  52. Lee J, Youn-Hee C, Shin-Kwon K, Hyung-Hwan P, Ik-Boo K (1989) Production of human leukocyte interferon in Escherichia coli by control of growth rate in fed-batch fermentation. Biotechnol Lett 2:695–698

    Google Scholar 

  53. Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48

    Article  CAS  Google Scholar 

  54. Lee J, Ramirez FW (1996) On-line optimal control of induced foreign protein production by recombinant bacteria in fed-batch reactors. Chem Eng Sci 51(4):521–534

    Article  CAS  Google Scholar 

  55. Lennox B, Kipling K, Glassey J, Montague G, Willis M Hiden H (2002) Automated production support for the bioprocess industry. Biotechnol Prog 18:269–275

    Article  CAS  Google Scholar 

  56. Levisauskas D, Simutis R, Borvitz D, Lübbert A (1996) Automatic control of the specific growth rate in fed-batch cultivations processes based on exhaust gas analysis. Bioproc Eng 15:145–150

    Article  CAS  Google Scholar 

  57. Lübbert A, Simutis R (1994) Adequate use of measuring data in bioprocess modelling and control. Trends Biotechnol 12:304–311

    Article  Google Scholar 

  58. Luli GW, StrohlWR (1990) Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    CAS  Google Scholar 

  59. Mandenius CF (2004) Recent developments in the monitoring, modelling and control of biological production systems. Bioproc Biosyst Eng 26:347–351

    Article  CAS  Google Scholar 

  60. McKenzie P, Kiang S, Tom J, Rubin AE, Futran M (2006) Can pharmaceutical process development become high tech? AIChE J 52(12):3990–3994

    Article  CAS  Google Scholar 

  61. Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23:667–682

    Article  CAS  Google Scholar 

  62. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell, a molecular approach. Sinauer, Sunderland

    Google Scholar 

  63. Nielsen J (2006) Microbial process kinetics, Chap 6. In: Ratledge C, Kristiansen B (eds) “Basic Biotechnology”, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  64. Nielsen J, Villadsen J (1994) Bioreaction engineering principles. Plenum, New York

    Google Scholar 

  65. Nielsen J, Villadsen J, Liden G (2003) Bioreaction engineering principles. Kluwer/Plenum, New York

    Google Scholar 

  66. Nomikos P, MacGregor JF (1995) Multivariate SPC charts for monitoring batch processes. Technometrics 37:41–59

    Article  Google Scholar 

  67. Ogunnaike B, Ray W (1994) Process dynamics, modelling and control. Oxford University Press, New York

    Google Scholar 

  68. Oliveira R, Clemente JJ, Cunha AE, Carrondo MJT (2005) Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation. J Biotechnol 116:35–50

    Article  CAS  Google Scholar 

  69. Oliveira R, Simutis R, Feyo de Azevedo S (2004) Design of a stable adaptive controller for driving aerobic fermentation processes near maximum oxygen transfer capacity. J Proc Control 14:617–626

    Article  CAS  Google Scholar 

  70. Pakula TM, Salonen K, Uusitalo J, Penttila M (2005) The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiol 151:135–143

    Article  CAS  Google Scholar 

  71. Park S, Ramirez WF (1988) Dynamics of heterologous protein secretion from Saccharomyces cerevisiae. Biotech Bioeng 33/3:272–281

    Google Scholar 

  72. Pillai V, Warman M (2005) The impact of PAT on information architecture and infrastructure. Proc Anal Technol 2/6:16–19

    Google Scholar 

  73. Pirt SJ (1994) The penicillin fermentation: a model for secondary metabolite production, Pirtferm papers, series A. Pirtferm Limited, London

    Google Scholar 

  74. Preusting H, Noordover J, Simutis R, Lübbert A (1996) The use of hybrid modeling for optimization of the penicillin fermentation process. Chimia 50:416–417

    CAS  Google Scholar 

  75. Qin SJ, Badgwell TA (1997) An overview of industrial model predictive control technology. AIChE Symp Ser 93:232

    Google Scholar 

  76. Rani KY, Rao VSR (1999) Control of fermenters—a review. Bioprocess Eng 21:77–88

    Article  Google Scholar 

  77. San KY, Bennett GN, Aristidou AA, Chou CH (1994) Strategies in high-level expression of recombinant protein in Escherichia coli. Ann NY Acad Sci 721:257–267

    Article  CAS  Google Scholar 

  78. Sauer T, Preuss KH (2005) Verbesserte Prozeßführung. Process PharmaTEC 5:50–52

    Google Scholar 

  79. Schubert J, Simutis R, Dors M, Havlík I, Lübbert A (1994a) Hybrid modelling of yeast production processes—combination of a priori knowledge on different levels of sophistication. Chem Eng Technol 17:10–20

    Article  CAS  Google Scholar 

  80. Schubert J, Simutis R, Dors M, Havlik I, Lübbert A (1994b) Bioprocess optimization and control: application of hybrid modelling. J Biotechnol 35:51–68

    Article  CAS  Google Scholar 

  81. Schügerl K (1997) Bioreaktionstechnik: Bioprozesse mit Mikroorganismen und Zellen: Prozeßüberwachung. Birkhäuser Verlag, Basel

    Google Scholar 

  82. Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85:149–173

    Article  Google Scholar 

  83. Shimizu H, Yasuoka K, Uchiyama K, Shioya S (1998) Bioprocess fault detection by non-linear multivariate analysis: application of an artificial autoassociative neural network and wavelet filter bank. Biotechnol Prog 14(1):79–87

    Article  CAS  Google Scholar 

  84. Shioya S (1992) Optimization and control in fed-batch bioreactors. Adv Biochem Eng Biotechnol 46:111–142

    CAS  Google Scholar 

  85. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  86. Simutis R, Lübbert A (1998) Advances in modeling for bioprocess supervision and control. In: Subramanian G (ed) Bioseper Bioproc, vol I, Wiley–VCH, New York, pp 411–461

  87. Simutis R, Havlik I, Lübbert A (1993a) Distributed modelling for the process state estimation and prediction during a production scale beer fermentation using fuzzy aided extended Kalman Filters and neuronal networks. In: Karim MN, Stephanopoulos G (eds) Modelling and control of biotechnical processes 1992. Pergamon, Oxford pp 95–100

    Google Scholar 

  88. Simutis R, Havlik I, Lübbert A (1993b) Fuzzy aided neural network for real time state estimation and process prediction in a production scale beer fermentation. J Biotechnol 27:203–215

    Article  CAS  Google Scholar 

  89. Simutis R, Lübbert A (1997) Exploratory analysis of bioprocesses using artificial neural network-based methods. Biotechnol Progr 13(4):479–487

    Article  CAS  Google Scholar 

  90. Smeets I, Van Impe J (2002) Optimal control of (bio-)chemical reactors: generic properties of time and space dependent optimization. Math Comput Simul 60/6(2002):475–486

    Article  Google Scholar 

  91. Sonnleitner B (2006) Measurements, modeling and control, Chap.10. In: Ratledge C, Kristiansen B (eds) Basic biotechnology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  92. Soons ZITA, Voogt JA, van Straten G, van Boxtel AJB (2006) Constant specific growth rate in fed-batch cultivation of Bordetella pertussis using adaptive control. J Biotechnol 125:252–268

    Article  CAS  Google Scholar 

  93. Tholudur A, Ramirez WF (1999) Optimization of fed-batch bioreactors using neural network parameter function models. Biotechnol Progr 12:302–309

    Article  Google Scholar 

  94. Thomson ML, Kramer MA (1994) Modeling chemical processes using prior knowledge and neural networks. AIChE J 40:1328–1340

    Article  Google Scholar 

  95. Van Overschee De Moor B (2001) The end of heuristic PID tuning. Preprints of the IFAC Workshop on digital control: past, present and future of PID control. CBS, Terrassa, p 687

    Google Scholar 

  96. Velut S, de Maré L, Hagander P (2007) Bioreactor control using a probing feeding strategy and mid-ranging control. Control Eng Pract 15:135–147

    Article  Google Scholar 

  97. Wang HY, Cooney C, Wang DIC (1979) Computer control of baker’s yeast production. Biotechnol Bioeng 21:975–995

    Article  CAS  Google Scholar 

  98. Wang F, Du D, Li Y, Chen J (2006) Regulation of CCR in the CGTase production from Bacillus macorous by the specific cell growth rate control. Enzyme Microb Technol 39(2006):1279–1285

    Article  CAS  Google Scholar 

  99. Webber K (2005) FDA update: process analytical technology for biotechnology products. Proc Anal Technol 2/4:12–14

    Google Scholar 

  100. Whiffin VS, Cooney MJ, Cord-Ruwisch R (2004) On-line detection of feed demand in high cell density cultures of Escherichia coli by measurement of changes in dissolved oxygen transients in complex media. Biotechnol Bioeng 85(4):422–433

    Article  CAS  Google Scholar 

  101. Wold S, Kettaneh N, Fridén H, Holmberg A (1998) Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemom Intell Lab Syst 44:331–340

    Article  CAS  Google Scholar 

  102. Yoon SK, Kang WK, Park TH (1994) Fed-batch operation of recombinant Escherichia coli containting trp promoter with controlled specific growth rate. Biotechnol Bioeng 43:995–999

    Article  CAS  Google Scholar 

  103. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. Trans ASME 64:759–768

    Google Scholar 

Download references

Acknowledgments

The work was generously supported by the state of “Sachsen-Anhalt”, Germany during several projects entitled Wachstumskerne, Exzellenzcluster, etc. We thank them for this support over long years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lübbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnoth, S., Jenzsch, M., Simutis, R. et al. Control of cultivation processes for recombinant protein production: a review. Bioprocess Biosyst Eng 31, 21–39 (2008). https://doi.org/10.1007/s00449-007-0163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-007-0163-7

Keywords

Navigation