Skip to main content
Log in

Feeding strategies for E. coli fermentations demanding an enriched environment

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The addition of a carbon nutrient feed to a fed-batch cultivation is often not enough to obtain satisfactory growth and/or production. In some cases, an additional feed with for example supplementary amino acids or complex media is required. This work presents the development of feeding strategies where more than one feed is required and the knowledge of the growth requirements is low. Simulations and cultivations with E. coli are shown using the proposed feed controllers which are based on a probing control concept. The strategies work well and they can be used to shorten the process development phase considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Riesenberg D, Guthke R (1999) High cell-density cultivation of microorgansims. Appl Microbiol 51:422–430

    CAS  Google Scholar 

  2. Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  Google Scholar 

  3. Luli GW, Strohl WR (1990) Comparison of growth, acetate production and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol 56:1004–1011

    CAS  Google Scholar 

  4. Panda AK, Khan RH, Mishra S, Rao KBCA, Totey AM (2000) Influences of yeast extract on specific cellular yield of Ovine growth hormone during fed-batch fermentations of E. coli. Bioprocess Eng 22:379–383

    Article  CAS  Google Scholar 

  5. Zawada J, Swartz J (2005) Maintaining rapid growth in moderate density Escherichia coli fermentations. Biotechnol Bioeng 89:407–415

    Article  CAS  Google Scholar 

  6. Yoon SK, Kang WK, Park TH (1994) Fed-batch operation of recombinant E. coli containing trpa promoter with controlled specific growth rate. Biotechnol Bioeng 43:996–999

    Article  Google Scholar 

  7. Han K, Lim HC, Hong J (1992) Acetic acid formation in E. coli fermentation. Biotechnol Bioeng 39:663–671

    Article  CAS  Google Scholar 

  8. Koh BT, Nakashimada U, Pfeiffer M, Yap MGS (1992) Comparison of acetate inhibition on growth of host and recombinant E. coli K12 strains. Biotechnol Lett 14:1115–1118

    Article  CAS  Google Scholar 

  9. Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. Adv Biochem Eng Biotechnol 30:147–194

    CAS  Google Scholar 

  10. Iding K, Buntemeyer H, Gudermann F, Deutschmann SM, Kionka C, Lehmann J (2001) An automatic system for the assessment of complex medium additives under cultivation conditions. Biotechnol Bioeng 73:442–448

    Article  CAS  Google Scholar 

  11. Johnston WA, Stewart M, Ledd P, Cooney M (2003) Tracking the acetate threshold using DO-transient control during medium and high cell density cultivation of recombinant Escherichia coli in complex media. Biotechnol Bioeng 84:314–323

    Article  CAS  Google Scholar 

  12. Whiffin VS, Cooney MJ, Cord-Ruwisch R (2004) Online detection of feed demand in high cell density cultures of E. coli by measurement of changes in dissolved oxygen transients in complex media. Biotechnol Bioeng 85:422–433

    Article  CAS  Google Scholar 

  13. Åkesson M, Hagander P, Axelsson JP (2001) Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol Bioeng 73:223–230

    Article  Google Scholar 

  14. Åkesson M, Hagander P, Axelsson JP (2001) Probing control of fed-batch cultures: analysis and tuning. Control Eng Practice 9:709–723

    Article  Google Scholar 

  15. Gschaedler A, Boudrant J (1994) Amino acid utilization during batch and continuous cultures of Escherichia coli on a semi-synthetic medium. J Biotechnol 37:235–251

    Article  CAS  Google Scholar 

  16. Ingraham JL, Maaloe O, Neidhardt FC (1983) Growth of the bacterial cell. Sunderland Mass, Sinauer Associates

  17. Meyer H-P, Leist C, Fiechter A (1984) Acetate formation in continuous culture of Escherichia coli K12 D1 on defined and complex media. J Biotechnol 1:355–358

    Article  CAS  Google Scholar 

  18. de Maré L, Velut S, Ledung E, Cimander C, Norrman B, Nordberg Karlsson E, Holst O, Hagander P (2005) A cultivation technique for E. coli fed-batch cultivations operating close to the maximum oxygen transfer capacity of the reactor. Biotechnol Lett 27:983–990

    Article  Google Scholar 

Download references

Acknowledgments

The funding is gratefully acknowledged from Vinnova (P10432-2). The authors are also grateful to Nina Gunnarsson for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. de Maré.

Appendix

Appendix

Two models are presented. The feeding strategies are designed to operate around μ which is chosen below the critical growth rate where acetate is accumulating. Therefore the overflow metabolism is not modelled. It can be included by introducing a maximum oxygen uptake rate and letting the glucose react to acetic acid when this threshold is passed. In both models the following relations are used:

The relation between K L a and the stirrer speed N is given by

$$K_{{\rm L}}a(N)=\alpha(N-N_{0}).$$

Henry’s law gives the dissolved oxygen concentration DO in %:

$${\rm DO} = {\rm HC}_{{\rm o}}.$$

The dissolved oxygen sensor dynamics is approximated as:

$$T_{p} \frac{{\rm d}{\rm DO}_{{\rm p}}}{{\rm d}t} + {\rm DO}_{{\rm p}} = {\rm DO}.$$

Mass balances of a fed-batch bio-reactor are given by

$$\frac{{\rm d}V}{{\rm d}t} = F_{{\rm g}} + F_{{\rm sup}} $$
(3)
$$\frac{{\rm d}({\rm VG})}{{\rm d}t} = F_{{\rm g}} G_{{\rm in}} - q_{{\rm g}} (G, {\rm sup} ){\rm VX}$$
(4)
$$\frac{{\rm d}({\rm VX})}{{\rm d}t} = \mu (G, {\rm sup} ){\rm VX}$$
(5)
$$\frac{{\rm d}({\rm VC}_{{\rm o}})}{{\rm d}t} = K_{{\rm L}} a(N)V(C_{{\rm o}}^{*} - C_{{\rm o}}) + q_{{\rm o}} (G, {\rm sup} ){\rm VX},$$
(6)

where sup is the needed supplement, in our case either lysine or complex medium. For notation and values of the parameters, see Table 1.

Model of E. coli DSM1099

The assumptions made in the model are:

  • The cells cannot take up glucose without lysine.

  • No growth takes place on lysine solely.

The mass balance of lysine (Lys) is given by

$$\frac{{\rm d}({\rm VLys})}{{\rm d}t} = F_{{\rm lys}} {\rm Lys}_{{\rm in}} - q_{{\rm lys}} (G, {\rm Lys}){\rm VX}.$$

The other mass balances are given by Eqs. 36, where the supplement (sup) is lysine. The cells cannot take up glucose without lysine, thus q g(G, Lys) can be described by double Michaelis–Menten:

$$q_{{\rm g}} (G, {\rm Lys}) = \frac{q_{{\rm g}}^{{\rm max}} G{\rm Lys}}{(k_{{\rm sg}} + G)(k_{{\rm slys}} + {\rm Lys})}.$$

The amount of lysine that is consumed together with glucose is described by:

$$q_{{\rm lys}}(G, {\rm Lys})=q_{{\rm g}}(G, {\rm Lys})Y_{{\rm lys}/{\rm g}}.$$

The yield coefficient Y lys/g is calculated from the experimental Y x/lys as Y lys/g  = Y x/g/Y x/lys.

A part of the carbon source is used for maintenance:

$$q_{{\rm m}}=\min(q_{{\rm g}}(G, {\rm Lys}),q_{{\rm mc}}).$$

The glucose flow can be divided into two: q eng that is used for energy purposes and q ang that is used in the anabolism

$$\begin{aligned} q_{{\rm g}}^{{\rm an}} & =(q_{{\rm g}} - q_{{\rm m}})Y_{{\rm x/g}} \frac{C_{{\rm x}}}{C_{{\rm g}}}\\ q_{{\rm g}}^{{\rm en}} &= q_{{\rm g}} - q_{{\rm g}} ^{{\rm an}} \end{aligned}$$

Growth μ and oxygen consumption q o are described by:

$$\begin{aligned} \mu &= (q_{{\rm g}} - q_{{\rm m}})Y_{{\rm x/g}}\\ q_{{\rm o}} &= q_{{\rm g}}^{en} Y_{{\rm o/g}}\\ \end{aligned} $$

Model of E. coli DSM6968

The following assumptions are made in the model:

  • The glucose uptake q g is only used for energy purposes.

  • Growth can take place on complex medium.

  • The complex uptake q c is independent of the glucose uptake.

  • The complex medium is used as building blocks firstly and as energy source secondly.

The mass balance of the complex medium (C) is:

$$\frac{{\rm d}({\rm VC})}{{\rm d}t} = F_{{\rm c}} {\rm Comp}_{{\rm in}} - q_{{\rm c}} (C){\rm VX}.$$

The other mass balances are given by the Eq. 36, where the supplement (sup) is a complex medium. The glucose uptake rate when there is enough complex medium present is given by

$$q_{{\rm g}}^{{\rm norm}} (G) = \frac{q_{{\rm g}}^{{\rm max}} G}{k_{{\rm sg}} + G}.$$

The complex uptake rate is described by:

$$q_{{\rm c}} (C) = \frac{q_{{\rm c}}^{{\rm max}} C}{k_{{\rm scomp}} + C}.$$

The complex medium flow into the cells is divided into two: q anc that describes the amount of complex medium that is used as building blocks in the cell growth, and q enc that describes the amount of complex medium used for energy purposes. The complex medium goes to q enc if there is not enough glucose to handle the energy requirements. This leads to a fraction, denoted φ, of q c that goes to cell growth. It is also assumed that twice (η = 2) as much complex medium as glucose is demanded for an efficient cell growth, i.e. glucose is used as energy and the complex medium is used as building blocks. After introduction of \({q_{{\rm g}}^{{\rm limit}} = \frac{q_{{\rm c}}}{\eta} + q_{{\rm mc}}},\)the model is given by

If q normg q limitg

$$\begin{aligned} q_{{\rm c}}^{{\rm an}^{*}}&= q_{{\rm c}} \\ q_{{\rm c}}^{{\rm en}}&=0\\ q_{{\rm g}} &= q_{{\rm g}}^{{\rm limit}}\\ \end{aligned}$$

else if q mcq normg q limitg

$$\begin{aligned} q_{{\rm g}}& = q_{{\rm g}}^{{\rm norm}}\\ q_{{\rm c}}^{{\rm an},1^{*}} &= \eta (q_{{\rm g}}^{{\rm norm}} - q_{{\rm mc}})\\ q_{{\rm c}}^{{\rm an}, 2^{*}}& = (q_{{\rm c}} - \eta (q_{{\rm g}}^{{\rm norm}} - q_{{\rm mc}}))\phi \\ q_{{\rm c}}^{{\rm an}^{*}}& = q_{{\rm c}}^{{\rm an}, 1^{*}} + q_{{\rm c}}^{{\rm an}, 2^{*}}\\ q_{{\rm c}}^{{\rm an}, 2}& = q_{{\rm c}}^{{\rm an}, 2^{*}} Y_{{\rm x/c}} \frac{C_{{\rm x}}}{C_{{\rm c}}}\\ q_{{\rm c}}^{{\rm en}}&= q_{{\rm c}} - \eta (q_{{\rm g}}^{{\rm norm}} - q_{{\rm mc}}) - q_{{\rm c}}^{{\rm an}, 2}\\ \end{aligned} $$

else q normg q mc

$$\begin{aligned} q_{{\rm g}} &= q_{{\rm g}}^{{\rm norm}}\\ q_{{\rm c}}^{{\rm an}^{*}}& = \max (0,(q_{{\rm c}} + \eta (q_{{\rm g}}^{{\rm norm}} - q_{{\rm mc}}))\phi)\\ q_{{\rm c}}^{{\rm an}} &= q_{{\rm c}}^{{\rm an}^{*}} Y_{{\rm x/c}} \frac{C_{{\rm x}}}{C_{{\rm c}}}\\ q_{{\rm c}}^{{\rm en}} &= q_{{\rm c}} - q_{{\rm c}}^{{\rm an}}\\ \end{aligned}. $$

The cell growth μ is described by:

$$\mu = q_{{\rm c}}^{{\rm an}^{*}} Y_{{\rm x/c}}.$$

The specific oxygen consumption is described by q o, where q eng q g,

$$q_{{\rm o}} = q_{{\rm g}}^{{\rm en}} Y_{{\rm o/g}} + q_{{\rm c}}^{{\rm en}} Y_{{\rm o/c}}.$$

Linearised model, pulse response and stability analysis of E. coli DSM6968

Linearised model

Linearised equations when q mcq normg q limitg are

$$\begin{aligned} T_{{\rm o}} \frac{{\rm d}\Delta {\rm DO}}{{\rm d}t} + \Delta {\rm DO} &= K_{{\rm og}} \Delta q_{{\rm g}} + K_{N} \Delta N + K_{{\rm oc}} \Delta q_{{\rm c}} \\ T_{{\rm g}} \frac{{\rm d}\Delta q_{{\rm g}}}{{\rm d}t} + \Delta q_{{\rm g}} &= K_{{\rm gf}} \Delta F_{{\rm g}} \\ T_{{\rm c}} \frac{{\rm d}\Delta q_{{\rm c}}}{{\rm d}t} + \Delta q_{{\rm c}} &= K_{{\rm cf}} \Delta F_{{\rm c}} \\ Tp\frac{{\rm d}\Delta {\rm DO}_{{\rm p}}}{{\rm d}t} + \Delta {\rm DO}_{{\rm p}} &= \Delta {\rm DO}\\ \end{aligned}$$
$$\begin{aligned} K_{{\rm og}} &= - \frac{{\rm HX}}{K_{{\rm L}} a}(Y_{{\rm o/g}} - \eta Y_{{\rm o/c}}^{*})\quad K_{{\rm oc}} = - \frac{{\rm HX}}{K_{{\rm L}} a}Y_{{\rm o/c}}^{*} \\ K_{{\rm N}}& = \frac{{\rm DO}^{*} - {\rm DO}}{K_{{\rm L}} a}\frac{\delta K_{{\rm L}} a}{\delta N}\quad K_{{\rm gf}} = \frac{G_{{\rm in}}}{{\rm VX}}\\ K_{{\rm cf}} &= \frac{{\rm Comp}_{{\rm in}}}{{\rm VX}}\quad T_{{\rm g}} = \left(\frac{\delta q_{{\rm g}}}{\delta G}X\right)^{- 1}\\ T_{{\rm o}} &= K_{{\rm L}} a^{- 1} \quad T_{{\rm c}} = \left(\frac{\delta q_{{\rm c}}}{\delta C}X\right)^{- 1}\\ \end{aligned}$$

where \({Y_{{\rm o/c}}^{*} = \left(1 - Y_{{\rm x/c}} \phi \frac{C_{{\rm x}}}{C_{{\rm c}}}\right)Y_{{\rm o/c}}}\) is introduced.

The pulse response and stability analysis

The pulse response is given by three equations when q g > q mc:

$$\Delta {\rm DO} = \left\{\begin{array}{*{20}l} |K_{{\rm og}} |q^{{\rm pulse}}_{{\rm g}}&\hbox{if}\;q_{{\rm g}} < q_{{\rm g}}^{{\rm limit}} - q_{{\rm g}}^{{\rm pulse}}\\ |K_{{\rm og}} |(q_{{\rm g}}^{{\rm limit}} - q_{{\rm g}})&\hbox{otherwise}\\ 0& q_{{\rm g}} > q_{{\rm g}}^{{\rm limit}} \\ \end{array}\right.$$

where q pulseg K gf ΔF pulseg . The glucose dynamics (T g), the complex medium dynamics (T c), the oxygen dynamics (T o) and the dissolved oxygen sensor dynamics (T p) are assumed to be fast compared to the pulse length and control phase. This gives the following response when q mcq gq limitg q pulse g:

$$\begin{aligned} \Delta {\rm DO} = |K_{{\rm og}} |K_{{\rm gf}} \Delta F_{{\rm g}} &= \frac{{\rm HG}_{{\rm in}}}{{\rm VK}_{L} a}(Y_{{\rm o/g}} - \eta Y_{{\rm o/c}}^{*})\Delta F_{{\rm g}}\\ & = \frac{{\rm DO}^{*} - {\rm DO}_{{\rm sp}}}{{1 + \frac{{q_{{\rm c}} + \eta q_{{\rm mc}}}}{{q_{{\rm g}} }}\frac{{Y_{{\rm o/c}}^{*}}}{{Y_{{{\rm o/g}}} - \eta Y_{{\rm o/c}}^{*}}}}}\Delta F_{{\rm g}} \approx 8 \end{aligned}, $$

when DO* =  80, DOsp =  30 and q gq limitg . This is the maximum pulse response that can be obtained with these values of the parameters.

For q limitg q pulseg q gq limitg , the response is given by

$$\Delta {\rm DO}(k + 1) = \Delta {\rm DO}(k) + \frac{|K_{{\rm og}} |}{\eta}(q_{{\rm c}} (k + 1) - q_{{\rm c}} (k)),$$

when q g is assumed to be constant (F g is an exponential feed corresponding to the exponential cell growth) and q c(k + 1) = q c(k) + K cfΔF c −ɛ. ε describes the influence of the changing cell mass VX. With the controller, Eq. 2, the closed loop response is:

$$\Delta {\rm DO}(k + 1) = \left(1 - \frac{|K_{{\rm og}}| K_{{\rm cf}} \kappa F_{{\rm c}}}{{\eta ({\rm DO}^{*} - {\rm DO}_{{\rm sp}})}}\right)\Delta {\rm DO}(k) + \frac{|K_{{\rm og}} |K_{{\rm cf}} \kappa F_{{\rm c}} }{{\eta ({\rm DO}^{*} - {\rm DO}_{{\rm sp}})}}y_{{\rm r}} - |K_{{\rm og}} |\varepsilon.$$

As

$$|K_{{\rm og}} |K_{{\rm cf}} = \frac{{\rm DO}^{*} - {\rm DO}_{{\rm sp}}}{{F_{{\rm c}} \frac{q_{{\rm g}}}{q_{{\rm c}} } + \frac{q_{{\rm c}} + \eta q_{{\rm mc}}}{q_{{\rm c}}}\frac{Y_{{\rm o/c}}^{*}}{{Y_{{\rm o/g}} - \eta Y_{{\rm o/c}}^{*}}}}} \approx \frac{{\rm DO}^{*} - {\rm DO}_{{\rm sp}}}{{F_{{\rm c}} \left(\frac{1}{\eta} + \beta \right)}}$$

with \({\frac{q_{{\rm g}}}{q_{{\rm c}}} \approx \frac{1}{\eta}, \frac{\eta q_{{\rm mc}} + q_{{\rm c}}}{q_{{\rm c}}} \approx 1}\) and \({\frac{Y_{{\rm o/c}}^{*}}{Y_{{\rm o/g}} - \eta Y_{{\rm o/c}}^{*}} \approx \beta }.\) This gives:

$$\Delta {\rm DO}(k + 1) = \left(1 - \frac{\kappa}{1 + \eta \beta}\right)\Delta {\rm DO}(k) + \frac{\kappa}{1 + \eta \beta}y_{{\rm r}} - |K_{{\rm og}} |\varepsilon.$$

The stability boundaries of κ are then given by: 0 < κ < 2(1 + ηβ) and the convergence point y * is given by: \({y^{*} = y_{{\rm r}} - \frac{(1 + \eta \beta )|K_{{{\rm og}}} |}{\kappa }\varepsilon }.\)

The influence from ɛ helps to reduce the risk of overfeeding the complex medium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Maré, L., Cimander, C., Elfwing, A. et al. Feeding strategies for E. coli fermentations demanding an enriched environment. Bioprocess Biosyst Eng 30, 13–25 (2007). https://doi.org/10.1007/s00449-006-0090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0090-z

Keywords

Navigation