Skip to main content

Advertisement

Log in

An Eco-Friendly and Sustainable Process for Enzymatic Hydrolysis of Penicillin G in Cloud Point System

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Enzymatic hydrolysis of penicillin G by immobilized penicillin acylase in a nonionic surfactant mediated cloud point system was presented. The effect of the operation parameters on equilibrium pH of this enzymatic hydrolysis process without pH control was examined. A relatively high equilibrium pH in cloud point system without pH control can be obtained. The feasibility of recycling utilization of the nonionic surfactant, a novel green solvent, was also investigated experimentally. Enzymatic hydrolysis of penicillin G in a discrete semi-batch mode, which simulates a semi-continuous process, envisages a completely eco-friendly, sustainable and efficient process for production of 6-aminopenicillanic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parmar A, Kumar H, Marwaha SS, Kennedy JF (2000) Advances in enzymatic transformation of penicillin to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289–301

    Article  CAS  Google Scholar 

  2. den Hollander JL, Zomerdijk M, Straathof AJJ, van der Wielen LAM (2002) Continuous enzymatic penicillin G hydrolysis in countercurrent water–butyl acetate biphasic systems. Chem Eng Sci 57:1591–1598

    Article  Google Scholar 

  3. den Hollander JL, Aversente A, Diender MB, Straathof AJJ, van der Wielen LAM (2005) Discrete countercurrent contacting: an experimental method for developing continuous countercurrent reactors. Ind Eng Chem Res 44:231–235

    Article  CAS  Google Scholar 

  4. Abian O, Mateo C, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2003) Improving the industrial production of APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents. Biotechnol Prog 19:1639–1642

    Article  CAS  Google Scholar 

  5. Ferreira JS, Straathof AJJ, Franco TT, van der Wielen LAM (2004) Activity and stability of immobilized penicillin amidase at low pH values. J Mol Catal B 27:29–35

    Article  CAS  Google Scholar 

  6. Wilson L, Illanes A, Pessela BCC, Abian O, Fernandez-Lafuente R, Guisan JM (2004) Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86(5):558–562

    Article  CAS  Google Scholar 

  7. Wyss A, Seitert H, von Stockar U, Marison IW (2005) Novel reactive perstraction system applied to the hydrolysis of penicillin G. Biotechno Bioeng 91(2):227–236

    Article  CAS  Google Scholar 

  8. Diender MB, Straathof AJJ, Heijnen JJ (1998) Predicting enzyme catalyzed reaction equilibrium in cosolvent –water mixture as function of pH and solvent composition. Biocatal Biotransf 16:275–289

    Article  CAS  Google Scholar 

  9. Hernandez-Justiz O, Fernandez-Lafuente R, Terreni M, Guisan JM (1998) Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzyme immobilized on porous supports. Biotechnol Bioeng 59(1):73–79

    Article  CAS  Google Scholar 

  10. Sheldon R A (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278

    Article  CAS  Google Scholar 

  11. Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37:19–28

    Article  CAS  Google Scholar 

  12. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Cur Opin Biotechnol 14:432–437

    Article  CAS  Google Scholar 

  13. Wang Z, Zhao F, Li D (2003) Determination of solubilization of phenol at coacervate phase of cloud point extraction. Colloids Surf A 216:207–214

    Article  CAS  Google Scholar 

  14. Quina FH, Hinze WL (1999) Surfactant-mediated cloud point extractions: an environmentally benign alternative separation approach. Ind Eng Chem Res 38:4150–4168

    Article  CAS  Google Scholar 

  15. Doroschuk VO, Kulichenko SA, Lelyushok SO (2005) The influence of substrate charge and molecular structure on interphase transfer in cloud point extraction system. J Colloid Interf Sci 291:251–255

    Article  CAS  Google Scholar 

  16. Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Microbial transformation of hydrophobic compounds in cloud point system. J Mol Catal B 27:147–153

    Article  CAS  Google Scholar 

  17. Wang Z, Zhao F, Hao X, Chen D, Li D (2004) Model of bioconversion of cholesterol in cloud point system. Biochem Eng J 19:9–13

    Article  CAS  Google Scholar 

  18. Wang Z, Zhao F, Chen D, Li D (2005) Cloud point system as a tool to improve the efficiency of biotransformation. Enzyme Microb Technol 36(4):589–594

    Article  CAS  Google Scholar 

  19. Wang Z, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system. Process Biochem 41(3):557–561

    Article  CAS  Google Scholar 

  20. Lee C-K, Su W-D (1998) Separation of phenylacetic acid from 6-aminopenicillanic acid via cloud point extraction with N-decyltetra (ethylene oxide) nonionic surfactant. Separ Sci Technol 33:1003–1012

    Article  CAS  Google Scholar 

  21. CHilov GG, Svedas VK (2002) Enzymatic hydrolysis of β-lactam antibiotics at low pH in a two-phase “aqueous solution-water-immiscible organic solvent” system. Can J Chem 80:699–707

    Article  CAS  Google Scholar 

  22. Wang Z, Guo Y, Bao D, Qi H (2006) Direct extraction of phenylacetic acid from immobilised enzymatic hydrolysis of penicillin G with cloud point extraction. J Chem Technol Biotechnol 81:560–565

    Article  CAS  Google Scholar 

  23. Diender MB, Straathof AJJ, van der Does T, Bas C, Heijen JJ (2002) Equilibrium modeling of extractive enzymatic hydrolysis of penicillin G with concomitant 6-aminopenicillanic acid crystallization. Biotechnol Bioeng 78(4):395–412

    Article  CAS  Google Scholar 

  24. Straathof AJJ (2003) Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnol Prog 19:755–762

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was partially supported by the Open Project Program of the State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, Z., Xu, JH. et al. An Eco-Friendly and Sustainable Process for Enzymatic Hydrolysis of Penicillin G in Cloud Point System. Bioprocess Biosyst Eng 29, 157–162 (2006). https://doi.org/10.1007/s00449-006-0067-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0067-y

Keywords

Navigation