Skip to main content
Log in

Construction and one-step purification of Bacillus kaustophilus leucine aminopeptidase fused to the starch-binding domain of Bacillus sp. strain TS-23 α-amylase

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The starch-binding domain of Bacillus sp. strain TS-23 α-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel–chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70°C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K m value. Starch-binding assays showed that the K d and B max values for the fusion enzyme were 2.3 μM and 0.35 μmol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris–HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption–elution cycle with a purification of 11.4-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goldberg AD, Cascio P, Saric T, Rock KL (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39:147–164

    CAS  PubMed  Google Scholar 

  2. Saric T, Graef CI, Goldberg AL (2004) Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279:46723–46732

    CAS  PubMed  Google Scholar 

  3. Carpenter FH, Vahl JM (1973) Leucine aminopeptidase (bovine lens): mechanism of activation by Mg2+ and Mn2+ of the zinc metalloenzyme, amino acid composition, and sulfhydryl content. J Biol Chem 248:294–304

    CAS  PubMed  Google Scholar 

  4. Burley SK, David PR, Sweet RM, Taylor A, Lipscomb WN (1992) Structure determination and refinement of bovine lens leucine aminopeptidase and its complex with bestatin. J Mol Biol 224:113–140

    CAS  PubMed  Google Scholar 

  5. Kim H, Lipscomb WN (1993) Differentiation and identification of the two catalytic metal binding sites in bovine lens leucine aminopeptidase by X-ray crystallography. Proc Natl Acad Sci USA 90:5006–5010

    CAS  PubMed  ADS  Google Scholar 

  6. Sträter N, Lipscomb WN (1995) Two-metal ion mechanism of bovine lens leucine aminopeptiase: active site solvent structure and binding mode of L-leucinal, a gem-diolate transition state analogue, by X-ray crystallography. Biochemistry 34:14792–14800

    PubMed  Google Scholar 

  7. Sträter N, Sun L, Kantrowitz ER, Lipscomb WN (1999) A bicarbonate ion as a general base in the mechanism of peptide hydrolysis by zinc leucine aminopeptidase. Proc Natl Acad Sci USA 96:11151–11155

    PubMed  ADS  Google Scholar 

  8. Gu YQ, Walling LL (2002) Identification of residues critical for activity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Eur J Biochem 269:1630–1640

    CAS  PubMed  Google Scholar 

  9. Chi MC, Chou WM, Hsu WH, Lin LL (2004) Identification of amino acid residues essential for the catalytic reaction of Bacillus kaustophilus leucine aminopeptidase. Biosci Biotechnol Biochem 68:1794–1797

    CAS  PubMed  Google Scholar 

  10. Bayer EA, Shimon LJ, Shoham Y, Lamed R (1998) Cellulosomes: structure and ultrastructure. J Struct Biol 124:221–234

    CAS  PubMed  Google Scholar 

  11. Tsuji SY, Wu N, Khosla C (2001) Intermodular communication in polykeyide synthases: comparing the role of protein-protein interactions to those in other multidomain proteins. Biochemistry 40:2317–2325

    CAS  PubMed  Google Scholar 

  12. Bulow L, Mosbach K (1991) Multienzyme systems obtained by gene fusion. Trends Biotechnol 9:226–231

    CAS  PubMed  Google Scholar 

  13. Nixon AE, Ostermeier M, Benkovic SJ (1998) Hybrid enzymes: manipulating enzyme design. Trends Biotechnol 16:258–264

    CAS  PubMed  Google Scholar 

  14. Beguin P (1999) Hybrid enzymes. Curr Opin Biotechnol 10:336–340

    CAS  PubMed  Google Scholar 

  15. Levy I, Shoseyov O (2002) Cellulose-binding domains: industrial and biotechnological application. Biotechnol Adv 20:191–213

    CAS  PubMed  Google Scholar 

  16. Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40

    CAS  PubMed  Google Scholar 

  17. Nilsson J, Stahl S, Lundeberg J, Uhen M, Nygren PA (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    CAS  PubMed  Google Scholar 

  18. Terpe K (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 60:523–533

    CAS  PubMed  Google Scholar 

  19. Greenwood JM, Gilkes NR, Kilburn DG, Miller RJ, Warren RA (1989) Fusion to an endoglucanase allows alkaline phosphatase to bind to cellulose. FEBS Lett 244:127–131

    CAS  PubMed  Google Scholar 

  20. Ramirez C, Fung J, Miller RCJ, Warren RAJ, Kilburn DG (1993) A bifunctional affinity linker to couple antibodies to cellulose. Bio/Technology 11:1570–1573

    CAS  PubMed  Google Scholar 

  21. Shpigel E, Goldlust A, Eshel A, Ber IK, Efroni G, Singer Y, Levy I, Dekel M, Shoseyov O (2000) Expression, purification and applications of staphylococcal protein A fused to cellulose-binding domain. Biotechnol Appl Biochem 31:197–203

    CAS  PubMed  Google Scholar 

  22. Le KD, Gilkes NR, Kilnurn DG, Miller RJ, Saddler JN, Warren RA (1994) A streptavidin-cellulose-binding domain fusion protein that binds biotinylated proteins to cellulose. Enzyme Microb Technol 16:496–500

    CAS  PubMed  Google Scholar 

  23. Svensson B, Jesperson H, Sierks MR, MacGregor EA (1989) Sequence homology between putative raw starch-binding domains from different starch-degrading enzymes. Biochem J 264:309–311

    CAS  PubMed  Google Scholar 

  24. Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L, Dijkstra BW (1994) Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 in a maltose-dependent crystal form. J Mol Biol 236:590–600

    CAS  PubMed  Google Scholar 

  25. Sorimachi K, Jacks AJ, Le Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch-binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–987

    CAS  PubMed  Google Scholar 

  26. Janeček Š, Ševčĺk J (1999) The evolution of starch-binding domain. FEBS Lett 456:119–125

    PubMed  ADS  Google Scholar 

  27. Le Gal-Coeffet MF, Jacks AJ, Sorimachi K, Williamson MP, Williamson G, Archer DB (1995) Expression in Aspergillus niger of the starch-binding domain of glucoamylase: comparison with the proteolytically produced starch-binding domain. Eur J Biochem 233:561–567

    CAS  PubMed  Google Scholar 

  28. Wind RD, Butteaar RM, Dijkhuizen L (1998) Engineering of factors determining α-amylase and cyclodextrin glycosyltransferase specificity in the cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1. Eur J Biochem 253:598–605

    CAS  PubMed  Google Scholar 

  29. Lin LL, Lo HF, Chi MC, Ku KL (2003) Functional expression of the raw starch-binding domain of Bacillus sp. strain TS-23 α-amylase in recombinant Escherichia coli. Starch/Stärke 55:197–202

    CAS  Google Scholar 

  30. Shibuya T, Tamura G, Shima H, Ishikawa T, Hara S (1992) Construction of an α-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 56:884–889

    Article  CAS  PubMed  Google Scholar 

  31. Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1994) High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem 58:895–899

    CAS  PubMed  Google Scholar 

  32. Dalmia BK, Schütte K, Nikolov ZL (1995) Domain E of Bacillus macerans cyclodextrin glucanotransferase: an independent starch-binding domain. Biotechnol Bioeng 47:575–584

    CAS  PubMed  Google Scholar 

  33. Ohdan K, Kuriki T, Takata H, Kaneko H, Okada S (2000) Introducing of raw starch-binding domain into Bacillus subtilis α-amylase by fusion with the starch-binding domain of Bacillus cyclomaltodextrin glucanotransferase. Appl Environ Microbiol 66:3058–3064

    CAS  PubMed  Google Scholar 

  34. Hua YW, Chi MC, Lo HF, Hsu WH, Lin LL (2004) Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp. strain TS-23 α-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity. J Ind Microbiol Biotechnol 31:273–277

    CAS  PubMed  Google Scholar 

  35. Lin LL, Hsu WH, Chu WS (1997) A gene encoding for an α-amylase from thermophilic Bacillus sp. TS-23 and its expression in Escherichia coli. J Appl Microbiol 82:325–334

    CAS  PubMed  ADS  Google Scholar 

  36. Lin LL, Hsu WH, Wu CP, Chi MC, Chou WM, Hu HY (2004) A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles 8:79–87

    CAS  PubMed  Google Scholar 

  37. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685

    CAS  ADS  Google Scholar 

  38. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  39. Swillens S (1995) Interpretation of binding curves obtained with high receptor concentrations: practical aid for computer analysis. Mol Pharmacol 47:1197–1203

    CAS  PubMed  Google Scholar 

  40. Hellman J, Mäntsälä P (1992) Construction of an Escherichia coli export-affinity vector for expression and purification of foreign proteins by fusion to cyclomaltodextrin glucanotransferase. J Biotechnol 23:19–34

    CAS  PubMed  Google Scholar 

  41. Moraes LMP, Astolfi-filho S, Oliver SG (1995) Development of yeast strains for the efficient utilization of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076

    PubMed  Google Scholar 

  42. Fontes CM, Hazlewood GP, Morag E, Hall J, Hirst BH, Gilbert HJ (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem J 307:151–158

    CAS  PubMed  Google Scholar 

  43. Riedel K, Ritter J, Bauer S, Bronnenmeier K (1998) The modular cellulase CelZ of the thermophilic bacterium Clostridium stercorarium contains a thermostabilizing domain. FEMS Microbiol Lett 164:261–267

    CAS  PubMed  Google Scholar 

  44. Chang HY, Irwin PM, Nikolov ZL (1998) Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. J Biotechnol 65:191–202

    CAS  PubMed  Google Scholar 

  45. Lo HF, Lin LL, Chiang WY, Chi MC, Hsu WH, Chang CT (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch Microbiol 178:115–123

    CAS  PubMed  Google Scholar 

  46. Medda S, Saha BC, Ueda S (1982) Raw starch adsorption and elution behavior of glucoamylase I of black Aspergillus. J Ferment Technol 60:261–264

    CAS  Google Scholar 

  47. Fang TY, Lin LL, Hsu WH (1994) Recovery of isoamylase from Pseudomonas amyloderamosa by adsorption–elution on raw starch. Enzyme Microb Technol 16:247–252

    CAS  Google Scholar 

  48. Saha BC, Ueda S (1983) Raw starch adsorption, elution, and digestion behavior of glucoamylase of Rhizopus niveus. J Ferment Technol 61:67–72

    CAS  Google Scholar 

  49. Dalmia BK, Nikolov ZL (1991) Characterization of glucoamylase adsorption to raw starch. Enzyme Microb Technol 13:982–990

    CAS  Google Scholar 

  50. Flora K, Brennan JD, Baker GA, Doody MA, Bright FV (1998) Unfolding of acrylodan-labeled human serum albumin probed by steady-state and time-resolved fluorescence methods. Biophys J 75:1084–1096

    CAS  PubMed  Google Scholar 

  51. Giacomelli CE, Norde W (2001) The adsorption-desorption cycle: reversibility of the BSA-silica system. J Colloid Interface Sci 233:234–240

    CAS  PubMed  Google Scholar 

  52. Bourne Y, Henrissat B (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr Opin Struct Biol 11:593–600

    CAS  PubMed  Google Scholar 

  53. Simpson PJ, Xie H, Bolam DN, Gilbert HJ, Williamson MP (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J Biol Chem 275:41137–41142

    CAS  PubMed  Google Scholar 

  54. Leloup VM, Colonna P, Ring SG (1991) α-Amylase adsorption on starch crystallites. Biotechnol Bioeng 38:127–134

    CAS  PubMed  Google Scholar 

  55. Saha BC, Lecureux LW, Zeikus JG (1988) Raw starch adsorption-desorption purification of a thermostable β-amylase from Clostridium thermosulfurogenes. Anal Biochem 175:569–572

    CAS  PubMed  Google Scholar 

  56. Haska N, Ohta Y (1992) Mechanism of hydrolysis of the treated sago starch granules by raw starch digesting amylases from Pencillium brunneum. Starch/Stärke 44:25–28

    CAS  Google Scholar 

  57. Sreenath HK (1992) Study on starch granules digestion by α-amylase. Starch/Stärke 44:61–63

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (NSC 93-2313-B-415-004) from the National Science Council of the Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Liu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, HB., Chi, MC., Hsu, WH. et al. Construction and one-step purification of Bacillus kaustophilus leucine aminopeptidase fused to the starch-binding domain of Bacillus sp. strain TS-23 α-amylase. Bioprocess Biosyst Eng 27, 389–398 (2005). https://doi.org/10.1007/s00449-005-0001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0001-8

Keywords

Navigation