Skip to main content
Log in

Control of endotoxin release in Escherichia coli fed-batch cultures

  • Original papers
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

High amounts of outer membrane (OM) components were released in glucose-limited fed-batch (GLFB) cultures at 37 °C at specific growth rates approaching 0.05 h−1. Endotoxin analyses from a 20 °C GLFB culture gave similar results. An alternative fermentation technique, the temperature-limited fed-batch (TLFB) technique, reduced the endotoxin concentration in a culture with a biomass concentration of 30 g l−1 from the 850 mg l−1 in traditional GLFB cultures to about 20 mg l−1. The TLFB technique uses the temperature to regulate the dissolved oxygen tension, while all substrate components are unregulated. It appears to be severe glucose limitation that triggers the extensive release of endotoxins rather than a low growth rate. Furthermore, it is not the low temperature that stabilizes the OM when using the TLFB technique. Simulations and experimental data show that this technique results in the same biomass productivity as the GLFB technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LPS:

Lipopolysaccharide

OM:

Outer membrane

GLFB:

Glucose limited fed-batch

TLFB:

Temperature limited fed-batch

EU:

Endotoxin unit

DOT:

Dissolved oxygen tension

OD:

Optical density

References

  1. Johnston CJ, Finkelstein JN, Gelein R, Oberdorster G (1998) Pulmonary cytokine and chemokine mRNA levels after inhalation of lipopolysaccharide in C57BL/6 mice. Toxicol Sci 46:300–307

    Article  CAS  Google Scholar 

  2. Raetz C (1996) Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphipiles. In: Neidhart FC (ed) Escherichia coli and Salmonella cellular and molecular biology. American Society for Microbiology, Washington, pp 1035–1063

    Google Scholar 

  3. Petsch D, Anspach FB (2000) Endotoxin removal from protein solutions. J Biotechnol 76:97–119

    Article  CAS  Google Scholar 

  4. Han L, Enfors S-O, Häggström L (2003) Escherichia coli high-cell-density culture: carbon mass balances and release of outer membrane components. Bioprocess Biosyst Eng 25:205–212

    CAS  Google Scholar 

  5. Hoekstra D, van der Laan JW, de Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899

    CAS  Google Scholar 

  6. Marvin HJ, ter Beest MB, Witholt B (1989) Release of outer membrane fragments from wild-type Escherichia coli and from several E. coli lipopolysaccharide mutants by EDTA and heat shock treatments. J Bacteriol 171:5262–5267

    CAS  Google Scholar 

  7. Ishiguro EE, Vanderwel D, Kusser W (1986) Control of lipopolysaccharide biosynthesis and release by Esherichia coli and Salmonella typhimurium. J Bacteriol 168:328–333

    CAS  Google Scholar 

  8. Bucklin SE, Fujihara Y, Leeson MC, Morrison DC (1994) Differential antibiotic-induced release of endotoxin from gram-negative bacteria. Eur J Clin Microbiol Infect Dis 13:43–51

    Google Scholar 

  9. Loeb MR, Kilner J (1978) Release of a special fraction of the outer membrane from both growing and phage T4-infected Escherichia coli B. Biochim Biophys Acta 518:117–127

    Google Scholar 

  10. Mackowiak PA (1984) Relationship between growth temperature and shedding of lipopolysaccharides by gram-negative Bacilli. Eur J Clin Microbiol 3:406–410

    Article  CAS  Google Scholar 

  11. Pelltier C, Bourlioux P, van Heijenoort J (1994) Effects of sub-minimal inhibitory concentrations of EDTA on growth of Escherichia coli and the release of lipopolysaccharide. FEMS Microbiol Lett 117:203–206

    Google Scholar 

  12. Irvin RT, MacAlister TJ, Chan R, Costerton JW (1981) Citrate-tris(hydroxymethyl)aminomethane-mediated release of outer membrane sections from the cell envelope of a deep-rough (heptose defiecient lipopolysaccharide) strain of Escherichia coli O8. J Bacteriol 145:1386–1396

    CAS  Google Scholar 

  13. Tsuchido T, Katsui N, Takeuchi A, Takano M, Shibasaki I (1985) Destruction of the outer membrane permeability barrier of Escherichia coli by heat treatment. Appl Environ Microbiol 50:298–303

    CAS  Google Scholar 

  14. Zhou L, Srisatjaluk R, Justus DE, Doyle RJ (1998) On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol Lett 163:223–228

    CAS  Google Scholar 

  15. Wensink J, Witholt B (1981) Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur J Biochem 116:331–335

    Article  CAS  Google Scholar 

  16. Holme T, Arvidsson S, Lindholm B, Pavlu B (1970) Enzymes: laboratory-scale production. Process Biochem 5:62–66

    CAS  Google Scholar 

  17. Silfversparre G, Enfors S-O, Han L, Häggström L, Skogman H (2002) Method for growth of microorganisms, minimising the release of endotoxins from the bacteria to the surrounding medium, Patent (PCT/SE01/02370), International Publication Number WO02/36746A1

  18. Larsson G, Törnkvist M (1996) Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivations. J Biotechnol 49:69–82

    CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  20. Moe D, Garbarsch C, Kirkeby S (1994) The protein effect on determination of DNA with Hoechst 33258. J Biochem Bioph Meth 28:263–276

    CAS  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  22. Xu B, Jahic M, Enfors S-O (1999) Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli. Biotechnol Prog 15:81–90

    Article  Google Scholar 

  23. Rothfield L, Pearlman-Kothencz M (1969) Synthesis and assembly of bacterial membrane components: a lipopolysaccharide-phospholipid-protein complex excreted by living bacteria. J Mol Biol 44:477–492

    Article  CAS  Google Scholar 

  24. Prins JM, van Deventer SJH, Kuijper EJ, Speelman P (1994) Clinical relevance of antibiotic-induced endotoxin release. Antimicrob Agents Ch 38:1211–1218

    CAS  Google Scholar 

  25. Neidhardt FC, Umbarger EH (1996) Chemical composition of Escherichia coli. In: Neidhart FC (ed) Escherichia coli and Salmonella cellular and molecular biology. American Society for Microbiology, Washington, pp 13–16

    Google Scholar 

  26. Andersson L, Strandberg L, Enfors S-O (1996) Cell segregation and lysis have profound effects on the growth of Escherichia coli in high cell density fed-batch cultures. Biotechnol Prog 12:190–195

    Article  CAS  Google Scholar 

  27. Andersson L, Yang S, Neubauer P, Enfors S-O (1996) Impact of plasmid presence and induction on cellular responses in fed-batch cultures of Escherichia coli. J Biotechnol 46:255–263

    Article  CAS  Google Scholar 

  28. Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhart FC (ed) Escherichia coli and Salmonella cellular and molecular biology. American Society for Microbiology, Washington, pp 1458–1496

    Google Scholar 

  29. Teich A, Meyer S, Lin HY, Andersson L, Enfors S-O, Neubauer P (1999) Growth rate related concentration changes of the starvation respons regulators σs and ppGpp in glucose limited fed-batch and continous cultures of Escherichia coli. Biotechnol Prog 15:123–129

    Article  CAS  Google Scholar 

  30. Chesbro W (1988) The domains of slow bacterial growth. Can J Microbiol 34(4):427–435

    CAS  Google Scholar 

  31. Chalmers JJ, Kim E, Telford JN, Wong EY, Tacon WC, Shuler ML, Wilson DB (1990) Effects of temperature on Escherichia coli overproducing-lactamase or human epidermal growth factor. Appl Environ Microbiol 56:104–111

    CAS  Google Scholar 

  32. Jahic M, Wållberg F, Bollok M, Garcia P, Enfors S-O (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2 (see http://www.microbialcellfactories.com/content/2/1/6)

Download references

Acknowledgement

This work was supported by a grant from the Swedish Centre for Bioprocess Tecnology, CBioPT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven-Olof Enfors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, M., Han, L., Silfversparre, G. et al. Control of endotoxin release in Escherichia coli fed-batch cultures. Bioprocess Biosyst Eng 27, 91–97 (2005). https://doi.org/10.1007/s00449-004-0377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-004-0377-x

Keywords

Navigation