Skip to main content
Log in

Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial production of butanediol and acetoin has received increasing interest because of their diverse potential practical uses. Although both products are fermentative in nature, their optimal production requires a low level of oxygen. In this study, the use of a recombinant oxygen uptake system on production of these metabolites was investigated. Enterobacter aerogenes was transformed with a pUC8-based plasmid carrying the gene (vgb) encoding Vitreoscilla (bacterial) hemoglobin (VHb). The presence of vgb and production of VHb by this strain resulted in an increase in viability from 72 to 96 h in culture, but no overall increase in cell mass. Accumulation of the fermentation products acetoin and butanediol were enhanced (up to 83%) by the presence of vgb/VHb. This vgb/VHb related effect appears to be due to an increase of flux through the acetoin/butanediol pathway, but not at the expense of acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a, b
Fig. 4

Similar content being viewed by others

References

  1. Stark BC, Webster DA, Dikshit KL (1999) Vitreoscilla hemoglobin: molecular biology, biochemistry, and practical applications. Recent Res Dev Biotechnol Bioeng 2:155–174

    CAS  Google Scholar 

  2. Wakabayashi S, Matsubara H, Webster DA (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481–483

    CAS  Google Scholar 

  3. Park KW, Kim KJ, Howard AJ, Stark BC, Webster DA (2002) Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. J Biol Chem 277:3334–3337

    Article  PubMed  Google Scholar 

  4. Geckil H, Gencer S, Kahraman H, Erenler SO (2003) Genetic engineering of Enterobacter aerogenes with Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress. Res Microbiol 154:425–431

    Article  CAS  PubMed  Google Scholar 

  5. Tsai PS, Rao G, Bailey JE (1995) Improvement of Escherichia coli microaerobic oxygen metabolism by Vitreoscilla hemoglobin: new insights from NAD(P)H fluorescence and culture redox potential. Biotechnol Bioeng 47:347–354

    CAS  Google Scholar 

  6. Geckil H, Stark BC, Webster DA (2001) Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently effected by the genetically engineered Vitreoscilla hemoglobin gene. J Biotechnol 85:57–66

    Article  CAS  PubMed  Google Scholar 

  7. Pringsheim EG (1951) The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J Gen Microbiol 5:124–149

    CAS  PubMed  Google Scholar 

  8. Buddenhagen RE, Webster DA, Stark BC (1996) Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol Lett 102:695–700

    Google Scholar 

  9. Kallio PT, Bailey JE (1996) Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of α-amylase and neutral protease in Bacillus subtilis. Biotechnol Prog 12:31–39

    Article  CAS  PubMed  Google Scholar 

  10. Khosravi M, Webster DA, Stark BC (1990) Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid 24:190–194

    CAS  PubMed  Google Scholar 

  11. DeModena JA, Gutierrez S, Velasco J, Fernandez FJ, Fachini RA, Galazzo JL, Hughes DE, Martin JF (1993) The production of cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technol 11:926–929

    CAS  Google Scholar 

  12. Magnolo SK, Leenutaphong DL, DeModena JA, Curtis JE, Bailey JE, Galazzo JL, Hughes DE (1991) Bio/Technol 9:473–476

    CAS  Google Scholar 

  13. Chen W, Hughes DE, Bailey JE (1994) Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechnol Prog 10:308–313

    CAS  PubMed  Google Scholar 

  14. Wei M-L, Webster DA, Stark BC (1998) Metabolic engineering of Serratia marcescens with the bacterial hemoglobin gene: alterations in fermentation pathways. Biotechnol Bioeng 59:640–646

    Article  CAS  PubMed  Google Scholar 

  15. Geckil H, Gencer S (2004) Production of L-asparaginase in Enterobacter aerogenes expressing Vitreoscilla hemoglobin for efficient oxygen uptake. Appl Microbiol Biotechnol 63:691–697

    Article  CAS  PubMed  Google Scholar 

  16. Geckil H, Ates B, Gencer S, Uckun M, Yilmaz I (2004) Membrane permeabilization of Gram-negative bacteria with a potassium phosphate/hexane aqueous phase system for the release of L-asparaginase: an enzyme used in cancer therapy. Process Biochem (in press)

    Google Scholar 

  17. Chung JW, Webster DA, Pagilla KR, Stark BC (2001) Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability. J Ind Microbiol Biotechnol 27:27–33

    Article  CAS  PubMed  Google Scholar 

  18. Fish PA, Webster DA, Stark BC (2000) Vitreoscilla hemoglobin enhances the first step in 2,4-dinitrotoluene degradation in vitro and at low aeration in vivo. J Mol Catal B Enzymatic 9:75–82

    Article  CAS  Google Scholar 

  19. Liu SC, Webster DA, Wei M-L, Stark BC (1996) Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia. Biotechnol Bioeng 49:101–105

    Article  CAS  Google Scholar 

  20. Nasr MA, Hwang KW, Akbas M, Webster DA, Stark BC (2001) Effects of culture conditions on enhancement of 2,4-dinitrotoluene degradation by Burkholderia engineered with the Vitreoscilla hemoglobin gene. Biotechnol Prog 17:359–361

    Article  CAS  PubMed  Google Scholar 

  21. Patel SM, Stark BC, Hwang KW, Dikshit KL, Webster DA (2000) Cloning and expression of the Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol Prog 16:26–30

    Article  CAS  PubMed  Google Scholar 

  22. Magee RJ, Kosaric N (1987) The microbial production of 2,3-butanediol. Adv Appl Microbiol 32:89–161

    CAS  Google Scholar 

  23. Montville TJ, Hsu AH, Meyer ME (1987) High-efficiency conversion of pyruvate to acetoin by Lactobacillus plantarum during pH-controlled and fed-batch fermentations. Appl Environ Microbiol 53:1798–1802

    CAS  Google Scholar 

  24. Dikshit KL, Webster DA (1988) Cloning, characterization, and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386

    Article  CAS  PubMed  Google Scholar 

  25. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  CAS  PubMed  Google Scholar 

  26. Erenler SO, Gencer S, Geckil H, Stark BC, Webster DA (2004) Cloning and expression of the Vitreoscilla hemoglobin gene in Enterobacter aerogenes: effect on cell growth an oxygen uptake. Appl Biochem Microbiol 40(3):241–248

    Article  CAS  Google Scholar 

  27. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, p 433

    Google Scholar 

  28. Westerfeld WW (1945) Colorimetric determination of blood acetoin. J Biol Chem 161:495–502

    CAS  Google Scholar 

  29. Keen AR, Walker NJ (1973) Separation of diacetyl, acetoin, and 2,3-butylene glycol by ion-exchange chromatography. Anal Biochem 52:475–481

    CAS  PubMed  Google Scholar 

  30. Stormer FC (1972) 2,3-Butanediol biosynthetic system in Aerobacter aerogenes. Methods Enzymol 41:518–533

    Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  32. White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press, Oxford, pp 285–286

    Google Scholar 

  33. Bassit N, Boquien C, Picque D, Corrieu G (1993) Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis subsp. lactis biovar diacetylactis. Appl Environ Microbiol 59:1893–1897

    CAS  Google Scholar 

  34. Beronio PB, Tsao GT (1993) Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol Bioeng 42:1263–1269

    CAS  Google Scholar 

  35. de Mas C, Jansen NB, Tsao GT (1988) Production of optically active 2,3-butanediol by Bacillus polymyxa. Biotechnol Bioeng 31:366–377

    Google Scholar 

  36. Jansen NB, Flickenger MC, Tsao GT (1984) Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724. Biotechnol Bioeng 26:362–369

    CAS  Google Scholar 

  37. Sablayrolles JM, Goma G (1984) Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation. Biotechnol Bioeng 26:148–155

    CAS  Google Scholar 

  38. Byun TG, Zeng AP, Deckwer WD (1994) Reactor comparison and scale-up for the microaerobic production of 2,3-butanediol by Enterobacter aerogenes at constant oxygen transfer rate. Bioproc Biosyst Eng 11:167–175

    Article  CAS  Google Scholar 

  39. Zeng AP, Biebl H, Deckwer WD (1990) Effect of pH and acetic acid on growth and 2,3-butanediol production of Enterobacter aerogenes in continuous culture. Appl Microbiol Biotechnol 33:485–489

    CAS  Google Scholar 

  40. Mallonee DH, Speckman RA (1988) Development of a mutant strain of Bacillus polymyxa showing enhanced production of 2,3-butanediol. Appl Environ Microbiol 54:168–171

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grant number BES-9309759 and a postdoctoral fellowship from the Council for Higher Education of Israel to H.G. at Ben Gurion University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Geckil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geckil, H., Barak, Z., Chipman, D.M. et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene. Bioprocess Biosyst Eng 26, 325–330 (2004). https://doi.org/10.1007/s00449-004-0373-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-004-0373-1

Keywords

Navigation