Skip to main content

Advertisement

Log in

Compressional tectonics and volcanism: the Miocene-Quaternary evolution of the Western Cordillera (24–26°S), Central Andes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Volcanism in compressional tectonic settings presents several unclear relations, especially between faulting, volcano locations, and local stress fields. The Central Andes comprise one of the most important volcanic provinces in the world, where these relations can be studied. We investigate the Miocene-Quaternary faulting and the tectonic stress evolution of the Western Cordillera of Chile, between 24 and 26°S, and how they dictate the orientation of magma feeding fractures, to understand the relations between deformation and volcanism. We calculated 68 new stress tensors from faults of recognized age and reconstructed magma paths by analyzing the morphostructural characteristics of 130 monogenetic and polygenetic volcanoes of known age. Moreover, we integrated the database with previously published data from the Western Cordillera to carry out a regional comparison. Results allow us to recognize three main volcano-tectonic events. The oldest occurred in the Early Miocene and was characterized by an E-W greatest principal stress (σ1) expressed by N-S-striking reverse faults and NW–SE left-lateral strike-slip faults. Volcanoes belonging to this stage show morphometric characteristics that indicate dominant N-S magma feeding systems. The second event, active during the Upper Miocene-Pliocene, was characterized by NW–SE to NNW-SSE σ1, WNW-ESE right-lateral strike-slip faults, and NW–SE preferential direction of volcanic feeding systems. The last event was active in the Upper Pliocene–Pleistocene, mainly in the northern part of the study area, with N-S to NE-SW normal and right-lateral strike-slip faults with NNE-SSW-trending least principal stress (σ3). Volcanism in this stage is characterized by NW–SE and N-S magma feeding systems. Our results suggest that volcano distribution has been mainly controlled by variations of the stress field related to the growth and collapse of the Puna Plateau. Magma emplacement was mainly guided by fractures parallel to the compression direction, irrespectively of the horizontal stress being σ3 or the intermediate principal stress σ2. Anyway, magma emplacement occurred also through fractures oblique to σ1, along strike-slip faults, or by exploitation of inherited weak structures, such as reverse faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471(1–2):67–77

    Article  Google Scholar 

  • Acocella V, Vezzoli L, Omarini R, Matteini M, Mazzuoli R (2007) Kinematic variations across Eastern Cordillera at 24S (Central Andes): tectonic and magmatic implications. Tectonophysics 434(1–4):81–92

    Article  Google Scholar 

  • Allmendinger RW (1986) Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes. Geol Soc Am Bull 97:1070–1082. https://doi.org/10.1130/0016-7606(1986)

    Article  Google Scholar 

  • Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophysics 259:1–13

    Article  Google Scholar 

  • Allmendinger RW, Strecker M, Eremchuk E, Francis P (1989) Neotectonic deformation of the southern Puna Plateau, northwestern Argentina. J S Am Earth Sci 2(2):111–130

    Article  Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano - Puna Plateau of the central Andes. Annu Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Allmendinger RW, Cardozo N, Fisher DM (2011) Structural geology algorithms: vectors and tensors. Cambridge University Press

    Book  Google Scholar 

  • Allmendinger RW (2018) FaultKinWin Full version 8.0.7. A program for analyzing fault slip data for windows system. Retrieved from. www.geo.cornell.edu/geology/faculty/RWA/programs.html.

  • Anderson EM (1951) The dynamics of faulting and dyke formation with applications to Britain. Oliver and Boyd, White Plains, New York

  • Anderssohn J, Motagh M, Walter TR, Rosenau M, Kaufmann H, Oncken O (2009) Surface deformation time series and source modeling for a volcanic complex system based on satellite wide swath and image mode interferometry: The Lazufre system, central Andes. Remote Sens Environ 113(10):2062–2075

  • Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress—III. A new rapid direct inversion method by analytical means. Geophys J Int 103(2):363–376

    Article  Google Scholar 

  • Arriagada C, Cobbold PR, Roperch P (2006) Salar de Atacama basin: a record of compressional tectonics in the central Andes since the mid-Cretaceous, Tectonics, 25, TC1008. https://doi.org/10.1029/2004TC001770

  • Assumpcao M (1992) The regional intraplate stress field in South America. J Geophys Res: Solid Earth 97(B8):11889–11903

    Article  Google Scholar 

  • Aydin A, Schultz RA (1990) Effect of mechanical interaction on the development of strike-slip faults with echelon patterns. J Struct Geol 12(1):123–129

    Article  Google Scholar 

  • Baby P, Moretti I, Guillier B, Limachi R, Mendez E, Oller J, Specht M (1995) Petroleum system of the northern and central Bolivian sub-Andean zone. In: Petroleum Basins of South America, AAPG Special Volumes Vol. M 62. pp 61–82

  • Barrionuevo M, Giambiagi L, Mescua JF, Suriano J, De la Cal H, Soto JL, Lossada AC (2019) Miocene deformation in the orogenic front of the Malargüe fold-and-thrust belt (35 30′–36 S): Controls on the migration of magmatic and hydrocarbon fluids. Tectonophysics 766:480–499

    Article  Google Scholar 

  • Barton CA, Zoback MD (1994) Stress perturbations associated with active faults penetrated by boreholes: possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. J Geophys Res: Solid Earth 99(B5):9373–9390

    Article  Google Scholar 

  • Bascuñán S, Arriagada C, Le Roux J, Deckart K (2015) Unraveling the Peruvian phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile. Basin Res 28:365–392

    Article  Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the central Andes. J Geophys Res 107(B10):2230

    Google Scholar 

  • Bonali F, Corazzato C, Tibaldi A (2011) Identifying rift zones on volcanoes: an example from La Réunion Island, Indian Ocean. Bull Volcanol 73:347–366. https://doi.org/10.1007/s00445-010-0416-1

    Article  Google Scholar 

  • Bonali FL, Corazzato C, Tibaldi A (2012) Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina). Global Planet Change 90:104–120

    Article  Google Scholar 

  • Bonali FL, Tibaldi A, Corazzato C (2015) Sensitivity analysis of earthquake-induced static stress changes on volcanoes: the 2010 M w 8.8 Chile earthquake. Geophys J Int 201(3):1868–1890

    Article  Google Scholar 

  • Brook M, Shepherd T, Spiro B, Smelling N, Swainbank J, Pandhurst R (1986) ANDCHRON: Andean geochronology and metallogenesis. British Geological Survey 1–137

  • Caffe PJ, Trumbull RB, Coira BL, Romer RL (2002) Petrogenesis of early volcanic phases in Northern Puna Cenozoic magmatism. Implications for magma genesis and crustal processes in the Central Andean Plateau. J Petrol 43:907–942

    Article  Google Scholar 

  • Canavan RR, Carrapa B, Clementz MT, Quade J, DeCelles PG, Schoenbohm LM (2014) Early Cenozoic uplift of the Puna Plateau, Central Andes, based on stable isotope paleoaltimetry of hydrated volcanic glass. Geology 42(5):447–450

    Article  Google Scholar 

  • Carrapa B, Adelmann D, Hilley GE, Mortimer E, Sobel ER, Strecker MR (2005) Oligocene range uplift and development of plateau morphology in the southern central Andes. Tectonics 24:TC4011

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic Successions. Allen & Unwin, London (528 pp)

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review. Tectonophysics 471(1–2):96–113

    Article  Google Scholar 

  • Charrier R, Pinto L, Rodríguez MP (2007) Tectonostratigraphic evolution of the Andean orogen in Chile. In: Moreno T, Gibbons W (eds) The Geology of Chile. The Geological Society, London, pp 21–114

    Chapter  Google Scholar 

  • Chaussard E, Amelung F (2014) Regional controls on magma ascent and storage in volcanic arcs. Geochem Geophys Geosyst 15:1407–1418. https://doi.org/10.1002/2013GC005216

    Article  Google Scholar 

  • Chernicoff CJ, Richards JP, Zappettini EO (2002) Crustal lineament control on magmatism and mineralization in northwestern Argentina: geological, geophysical and remote sensing evidence. Ore Geol Rev 21:127–155

    Article  Google Scholar 

  • Chiba T, Kaneta SI, Suzuki Y (2008) Red relief image map: new visualization method for three-dimensional data. Int Arch Photogramm Remote Sens Spat Inf Sci 37(B2):1071–1076

    Google Scholar 

  • Cladouhos TT, Allmendinger RW, Coira B, Farrar E (1994) Late Cenozoic deformation in the Central Andes: fault kinematics from the northern Puna, northwestern Argentina and southwestern Bolivia. J S Am Earth Sci 7(2):209–228

    Article  Google Scholar 

  • Coblentz DD, Richardson RM (1996) Analysis of the South American intraplate stress field. J Geophys Res: Solid Earth 101(B4):8643–8657

    Article  Google Scholar 

  • Corazzato C, Tibaldi A (2006) Basement fracture control on type, distribution, and morphology of parasitic volcanic cones: an example from Mt. Etna, Italy. In: Tibaldi A, Lagmay M (eds) Interaction between Volcanoes and their Basement. J. Volcanol. Geotherm. Res., Vol 158, pp 177–194

  • Cornejo P, Mpodozis C (1996) Geología de la Región de Sierra Exploradora (25°-26° Lat. S). Servicio Nacional de Geología y Minería, Informe Registrado IR-96–09, 2 Vols. Santiago

  • Coutand I, Cobbold PR, de Urreiztieta M, Gautier P, Chauvin A, Gapais D, Rossello EA, Lopez-Gamundì O (2001) Style and history of Andean deformation, Puna plateau, northwestern Argentina. Tectonics 20:210–234

    Article  Google Scholar 

  • Crignola FJ (2002) Estudio Geológico - Estructural de Lineamientos Transversals a la Sierra de Almeida, Alta Cordillera de la Segunda Región de Antofagasta. Memoria de Titulo, Chile, p 70

    Google Scholar 

  • Dalmayrac B, Molnar P (1981) Parallel thrust and normal faulting in Peru and constraints on the state of stress. Earth Planet Sci Lett 55(3):473–481

    Article  Google Scholar 

  • Daxberger H, Riller U (2015) Kinematics of Neogene to Recent upper-crustal deformation in the southern Central Andes (23–28 S) inferred from fault–slip analysis: evidence for gravitational spreading of the Puna Plateau. Tectonophysics 642:16–28

    Article  Google Scholar 

  • de Silva SL (1989) Altiplano-Puna volcanic complex of the Central Andes. Geology 17:1102–1106

    Article  Google Scholar 

  • DeCelles PG, Zandt G, Beck SL, Currie CA, Ducea MN, Kapp P, ... Schoenbohm LM (2014) Cyclical orogenic processes in the Cenozoic central Andes. Geol Soc Am Mem 212:MWR212–22

  • DeCelles PG, Horton BK (2003) Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol Soc Am Bull 115:58–77

    Article  Google Scholar 

  • Deeken A, Sobel ER, Coutand I, Haschke M, Riller U, Strecker MR (2006) Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening, Tectonics, 25, TC6003. https://doi.org/10.1029/2005TC001894

  • Delvaux D, Moeys R, Stapel G, Petit C, Levi K, Miroshnichenko A, ... San’kov V (1997) Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2. Cenozoic rifting. Tectonophysics 282(1–4):1–38

  • Diraison M, Cobbold P, Rossello E, Amos A (1998) Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina. J South Am Earth Sci 11:519–532

    Article  Google Scholar 

  • Dupin JM, Sassi W, Angelier J (1993) Homogeneous stress hypothesis and actual fault slip: a distinct element analysis. J Struct Geol 15(8):1033–1043

    Article  Google Scholar 

  • Echavarria L, Hernandez R, Allmendinger R, Reynolds J (2003) Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bull 87(6):965–985

    Article  Google Scholar 

  • Eichelberger N, McQuarrie N, Ryan J, Karimi B, Beck S, Zandt G (2015) Evolution of crustal thickening in the central Andes, Bolivia. Earth Planet Sci Lett 426:191–203

    Article  Google Scholar 

  • Elger K, Oncken O, Glodny J (2005) Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24:TC4020. https://doi.org/10.1029/2004TC001675

    Article  Google Scholar 

  • Fitch TJ (1972) Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific. J Geophys Res 77:4432–4435

    Article  Google Scholar 

  • Fleitout L, Froidevaux C (1982) Tectonics and topography for a lithosphere containing density heterogeneities. Tectonics 1(1):21–56

    Article  Google Scholar 

  • Froidevaux C, Isacks BL (1984) The mechanical state of the lithosphere in the Altiplano-Puna segment of the Andes. Earth Planet Sci Lett 71(2):305–314

    Article  Google Scholar 

  • Galland O, De Bremond d’Ars J, Cobbold PR, Hallot E (2003) Physical models of magmatic intrusion during thrusting. Terra Nova 15(6):405–409

    Article  Google Scholar 

  • Galland O, Cobbold PR, de Bremond d’Ars J, Hallot E (2007a) Rise and emplacement of magma during horizontal shortening of the brittle crust: insights from experimental modelling. J Geophys Res. https://doi.org/10.1029/2006JB004604

    Article  Google Scholar 

  • Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond d’Ars J (2007) volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén Province, Argentina). Tectonics 26:TC4010. https://doi.org/10.1029/2006TC002011

    Article  Google Scholar 

  • Gapais D, Cobbold PR, Bourgeois O, Rouby D, de Urreiztieta M (2000) Tectonic significance of fault-slip data. J Struct Geol 22(7):881–888

    Article  Google Scholar 

  • Gardeweg M, Carlos F, Ramírez R, J Davidson M (1993) Mapa geológico del área del Salar de Punta Negra y del Volcán Llullaillaco, Región de Antofagasta. Servicio Nacional de Geología y Minería

  • Garzione CN, Molnar P, Libarkin JC, MacFadden BJ (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet Sci Lett 241(3):543–556

    Article  Google Scholar 

  • Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden BJ, Eiler JM, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307

    Article  Google Scholar 

  • Germa A, Connor LJ, Cañon-Tapia E, Le Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75(12):1–14

    Article  Google Scholar 

  • Ghosh P, Garzione CN, Eiler JM (2006) Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311:511–515

    Article  Google Scholar 

  • Giambiagi L, Alvarez P, Spagnotto S (2016) Temporal variation of the stress field during the construction of the central Andes: constraints from the volcanic arc region (22–26° S), Western Cordillera, Chile, during the last 20 Ma. Tectonics 35(9):2014–2033

    Article  Google Scholar 

  • Glazner AF (1991) Plutonism, oblique subduction, and continental growth: an example from the Mesozoic of California. Geology 19:784–786

    Article  Google Scholar 

  • González, G., Cembrano, J., Aron, F., Veloso, E. E., and Shyu, J. B. H. (2009), Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°S–24°S), Tectonics, 28, TC6003, doi:10.1029/2009TC002538.

  • Gonzalez R, Wilke GH, Menzies AH, Riquelme R, Herrera C, Matthews S, Espinoza F, Cornejo P (2015) Carta Sierra de Varas, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile. Serie Geología Básica 178, 1 mapa escala 1:100.000

  • Gubbels TL, Isacks BL, Farrar E (1993) High-level surfaces, plateau uplift and foreland development, Bolivian central Andes. Geology 2(1):695–698

    Article  Google Scholar 

  • Gudmundsson A (2006) How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci Rev 79:1–31

    Article  Google Scholar 

  • Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geotherm Res 237–238:19–41

    Article  Google Scholar 

  • Gürer D, Galland O, Corfu F, Leanza HA, Sassier C (2016) Structure and evolution of volcanic plumbing systems in fold-and-thrust belts: a case study of the Cerro Negro de Tricao Malal, Neuquén Province, Argentina. GSA Bull 128(1–2):315–331

    Google Scholar 

  • Haag MB, Baez WA, Sommer CA, Arnosio JM, Filipovich RE (2019) Geomorphology and spatial distribution of monogenetic volcanoes in the southern Puna Plateau (NW Argentina). Geomorphology 342:196–209

    Article  Google Scholar 

  • Hamilton WB (1995) Subduction systems and magmatism. In: Smellie JR (ed) Volcanism Associated with Extension to Consuming Plate Margins. Geol. Soc. London Spec. Publ, Vol 81, pp 3–28

  • Oliver H, Giampiero I, Hans-Peter B (2008) Topography growth drives stress rotations in the central Andes: Observations and models. Geophys Res Lett 35(8)

  • Herail G, Oller J, Baby P, Bonhomme M, Soler P (1996) Strike-slip faulting, thrusting and related basins in the Cenozoic evolution of the southern branch of the Bolivian Orocline. Tectonophysics 259:201–212

    Article  Google Scholar 

  • Hernando IR, Franzese JR, Llambías EJ, Petrinovic IA (2014) Vent distribution in the Quaternary Payún Matrú Volcanic Field, western Argentina: its relation to tectonics and crustal structures. Tectonophysics 622:122–134

    Article  Google Scholar 

  • Horton BK (2018) Sedimentary record of Andean mountain building. Earth Sci Rev 178:279–309

    Article  Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Article  Google Scholar 

  • Jordan TE, Alonso RN (1987) Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20°–28° south latitude. AAPG Bull 71:49–64

    Google Scholar 

  • Jordan, T. E., Nester, P. L., Blanco, N., Hoke, G. D., Dávila, F., and Tomlinson, A. J. (2010), Uplift of the Altiplano-Puna plateau: A view from the west, Tectonics, 29, TC5007, doi:10.1029/2010TC002661.

  • Kaven JO, Maerten F, Pollard DD (2011) Mechanical analysis of fault slip data: implications for paleostress analysis. J Struct Geol 33(2):78–91

    Article  Google Scholar 

  • Kay SM, Coira B, Viramonte J (1994) Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes. J Geophys Res Solid Earth 99(B12):24323–24339

    Article  Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustal flow under the Central Andean Altiplano-Puna Plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geological Society of America Memoir 204:229–259

  • Kervyn M, Ernst GGJ, Carracedo JC, Jacobs P (2012) Geomorphometric variability of “monogenetic” volcanic cones: evidence from Mauna Kea, Lanzarote and experimental cones. Geomorphology 136(1):59–75

    Article  Google Scholar 

  • Kley J (1996) Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 15:763–775

    Article  Google Scholar 

  • Kley J (1999) Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J South Am Earth Sci 12:221–235

    Article  Google Scholar 

  • Kley J, Monaldi CR (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the correlation? Geology 26:723–726

    Article  Google Scholar 

  • Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogaard P, Gorler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina. J South Am Earth Sci 12:157–182

    Article  Google Scholar 

  • Kusznir N (1991) The distribution of stress with depth in the lithosphere: thermo-rheological and geodynamic constraints. In: Whitmarsh RB et al (eds) Tectonic Stress in the Lithosphere. R. Soc, London, pp 95–110

    Google Scholar 

  • Lacombe O (2012) Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion. Comptes Rendus Geoscience 344(3–4):159–173

    Article  Google Scholar 

  • Lahsen A (1982) Upper Cenozoic volcanism and tectonism in the Andes of northern Chile. Earth Sci Rev 18(3):285–302

    Article  Google Scholar 

  • Lanza F, Tibaldi A, Bonali FL, Corazzato C (2013) Space–time variations of stresses in the Miocene-Quaternary along the Calama–Olacapato–El Toro fault zone, Central Andes. Tectonophysics 593:33–56

    Article  Google Scholar 

  • Leever KA, Gabrielsen RH, Sokoutis D, Willingshofer E (2011) The effect of convergence angle on the kinematic evolution of strain partitioning in transpressional brittle wedges: Insight from analog modeling and high-resolution digital image analysis, Tectonics, 30, TC2013. https://doi.org/10.1029/2010TC002823

  • Llambías EJ, Leanza HA, Galland O (2011) Agrupamiento volcánico Tromen-Tilhue. In: Leanza HA, Arregui C, Carbone O, Danieli JC, Vallés JM (eds) Geologia y Recursos Naturales de la Provincia del Neuquén, XVIII Congreso Geologico Argentino, Relatorio: Neuquén, Argentina, Asociación Geológica Argentina, p 627–636

  • Lopez C, Martinez F, Maksymowicz A, Giambiagi L, Riquelme R (2019) What is the structure of the forearc region in the Central Andes of northern Chile? An approach from field data and 2-D reflection seismic data. Tectonophysics 769:228187

    Article  Google Scholar 

  • Maerten L (2000) Variation in slip on intersecting normal faults: implications for paleostress inversion. J Geophys Res: Solid Earth 105(B11):25553–25565

    Article  Google Scholar 

  • Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. J Struct Geol 12(8):973–986

    Article  Google Scholar 

  • Marrett R, Strecker MR (2000) Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions. Tectonics 19(3):452–467

    Article  Google Scholar 

  • Marrett RA, Allmendinger RW, Alonso RN, Drake RE (1994) Late Cenozoic tectonic evolution of the Puna plateau and adjacent foreland, northwestern Argentine Andes. J South Am Earth Sci 7:179–207

    Article  Google Scholar 

  • Martínez F, Gonzalez R, Bascuñan S, Arriagada C (2017) Structural styles of the salar de Punta Negra basin in the preandean depression (24°-25°S) of the central Andes. J S Am Earth Sci 87:188–199

    Article  Google Scholar 

  • Martınez-Dıaz JJ (2002) Stress field variation related to fault interaction in a reverse oblique-slip fault: the Alhama de Murcia fault, Betic Cordillera, Spain. Tectonophysics 356(4):291–305

    Article  Google Scholar 

  • Matteini M, Mazzuoli R, Omarini R, Cas R, Maas R (2002) Geodynamical evolution of Central Andes at 24°S as inferred by magma composition along the Calama–Olacapato–El Toro transversal volcanic belt. J Volcanol Geotherm Res 118(1–2):205–228

  • McQuarrie N (2002) The kinematic history of the central Andean fold-thrust belt, Bolivia; implications for building a high plateau. Geol Soc Am Bull 114:950–963

    Article  Google Scholar 

  • Meijer PTh, Govers R, Wortel MJR (1997) Forces controlling the present-day state of stress in the Andes. Earth Planet Sc Lett 148:157–170

    Article  Google Scholar 

  • Mercier JL, Sebrier M, Lavenu A, Cabrera J, Bellier O, Dumont JF, Machrare J (1992) Changes in the tectonic regime above a subduction zone of Andean type: The Andes of Peru and Bolivia during the Pliocene-Pleistocene. J Geophys Res: Solid Earth 97(B8):11945–11982

    Article  Google Scholar 

  • Moretti I, Baby P, Mendez E, Zubieta D (1996) Hydrocarbon generation in relation to thrusting in the Sub Andean zone from 18 to 22 degrees S, Bolivia. Pet Geosci 2(1):17–28

    Article  Google Scholar 

  • Mpodozis C, Ramos VA (2008) Tectónica jurásica en Argentina y Chile: Extensión, Subducción Oblicua, Rifting, Deriva y Colisiones? Rev Geol Argent 63:479–495

    Google Scholar 

  • Mpodozis C, Arriagada C, Basso M, Roperch P, Cobbold P, Reich M (2005) Late Mesozoic to Paleogene stratigraphy of the Salar the Atacama Basin, Antofagasta, Northern Chile: implications for the tectonic evolution of the Central Andes. Tectonophysics 399:125–154

    Article  Google Scholar 

  • Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation-principle and proposal. J Volcanol Geotherm Res 2:1–16. https://doi.org/10.1016/0377-0273(77)90012-9

    Article  Google Scholar 

  • Nakamura K, Uyeda S (1980) Stress gradient in arc-back arc regions and plate subduction. J Geophys Res 85:6419–6428

    Article  Google Scholar 

  • Nakamura K, Jacob KH, Davies JN (1977) Volcanoes as possible indicators of tectonic stress orientation – Aleutinian and Alaska. Pure Appl Geophys 115:87–112

    Article  Google Scholar 

  • Naranjo JA, Hevia F, Villa V, Ramírez CA (2018a) Miocene to Holocene geological evolution of the Lazufre segment in the Andean volcanic arc. Geosphere 15(1):47–59

    Article  Google Scholar 

  • Naranjo JA, Villa V, Ramírez C, Pérez de Arce C (2018b) Volcanism and tectonism in the southern Central Andes: tempo, styles, and relationships. Geosphere 14(2):626–641

    Article  Google Scholar 

  • Naranjo JA, Cornejo P (1992) Hoja Salar de la Isla: Servicio Nacional de Geología y Minería (Chile) Carta Geológica de Chile 72, scale 1:250,000, 1 sheet

  • Naranjo JA, Villa V, Venegas C (2013a) Geología de las áreas Salar de Aguilar y Portezuelo del León Muerto, Regiones de Antofagasta y Atacama: Servicio Nacional de Geología y Minería (Chile) Carta Geológica de Chile, Serie Geología Básica 151 and 152, scale 1:100,000, 1 sheet

  • Naranjo JA, Villa V, Venegas C (2013b) Geología de las áreas Salar de Pajonales y Cerro Moño, Regiones de Antofagasta y Atacama: Servicio Nacional de Geología y Minería (Chile) Carta Geológica de Chile, Serie Geología Básica 153 and 154, scale 1:100,000, 1 sheet

  • Nieto-Samaniego ÁF (1999) Stress, strain and fault patterns. J Struct Geol 21(8–9):1065–1070

    Article  Google Scholar 

  • Noblet C, Lavenu A, Marocco R (1996) Concept of continuum as opposed to periodic tectonism in the Andes. Tectonophysics 255(1–2):65–78

    Article  Google Scholar 

  • Norini G, Baez W, Becchio R, Viramonte J, Giordano G, Arnosio M, ... Groppelli G (2013) The Calama–Olacapato–El Toro fault system in the Puna Plateau, Central Andes: geodynamic implications and stratovolcanoes emplacement. Tectonophysics 608:1280–1297

  • Pananont P, Mpodozis C, Blanco N, Jordan TE, Brown LD (2004) Cenozoic evolution of the northwestern Salar de Atacama Basin, northern Chile, Tectonics, 23, TC6007. https://doi.org/10.1029/2003TC001595

  • Pardo-Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6:233–248

    Article  Google Scholar 

  • Pasquaré G, Tibaldi A, Attolini C, Cecconi G (1988) Morphometry, spatial distribution and tectonic control of Quaternary volcanoes in northern Michoacan, Mexico. Rend Soc Ital Mineral Petrol 43(4):1215–1225

    Google Scholar 

  • Pasquarè FA, Tibaldi A (2003) Do transcurrent faults guide volcano growth? The case of NW Bicol Volcanic Arc, Luzon, Philippines. Terra Nova 15(3):204–212

    Article  Google Scholar 

  • Paulsen TS, Wilson TJ (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 482(1):16–28

    Article  Google Scholar 

  • Petit JP (1987) Criteria for the sense of movement on fault surfaces in brittle rocks. J Struct Geol 9(5–6):597–608

    Article  Google Scholar 

  • Petrinovic IA, Riller U, Brod A (2005) The Negra Muerta volcanic complex, southern Central Andes: geochemical characteristics and magmatic evolution of an episodic volcanic centre. J Volcanol Geotherm Res 140(4):295–320

    Article  Google Scholar 

  • Pollard DD, Segall P (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces. In: Fracture mechanics of rock. pp 277–347

  • Ramelow J, Riller U, Romer RL, Oncken O (2006) Kinematic link between episodic caldera collapse of the Negra Muerta collapse caldera and motion on the Olacapato–El Toro fault zone, NW-Argentina. Int J Earth Sci 95:529–541. https://doi.org/10.1007/s00531-005-0042-x

    Article  Google Scholar 

  • Ramos VA (2009) Anatomy and global context of the Andes: main geologic features and the Andean orogenic cycle. In: Kay SM, Ramos VA, Dickinson W (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision. Geol Soc Am Mem 204: 31–65

  • Richards JP, Villeneuve M (2002) Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. J Volcanol Geoth Res 116(3–4):161–200

    Article  Google Scholar 

  • Richards JP, Boyce AJ, Pringle MS (2001) Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal localization of porphyry Cu mineralization. Econ Geol 96(2):271–305

    Article  Google Scholar 

  • Richardson RM, Coblentz DD (1994) Stress modeling in the Andes: constraints on the South American intraplate stress magnitudes. J Geophys Res: Solid Earth 99(B11):22015–22025

    Article  Google Scholar 

  • Riller U, Petrinovic I, Ramelow J, Strecker M, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes. Earth Planet Sci Lett 188(3–4):299–311

    Article  Google Scholar 

  • Riller U, Cruden AR, Boutelier D, Schrank CE (2012) The causes of sinuous crustal-scale deformation patterns in hot orogens: evidence from scaled analogue experiments and the southern Central Andes. J Struct Geol 37:65–74

    Article  Google Scholar 

  • Ruch J, Walter TR (2010) Relationship between the InSAR-measured uplift, the structural framework, and the present-day stress field at Lazufre volcanic area, central Andes. Tectonophysics 492(1–4):133–140

    Article  Google Scholar 

  • Salfity JA (1985) Lineamentos transversales al rumbo andino en el Noroeste Argentino. In: IV Congreso Geologico Chileno, (Vol. 2, pp. 119–137), Antofagasta, Chile

  • Sasvári Á, Baharev A (2014) SG2PS (structural geology to postscript converter)–a graphical solution for brittle structural data evaluation and paleostress calculation. Comput Geosci 66:81–93

    Article  Google Scholar 

  • Schildgen TF, Hoke GD (2018) The topographic evolution of the central Andes. Elements: Int Mag Mineral Geochem Petrol 14(4):231–236

  • Schnurr WBW, Trumbull RB, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27 °S, 67 to 72 °W. J Volcanol Geotherm Res 166:17–46. https://doi.org/10.1016/j.jvolgeores.2007.06.005

    Article  Google Scholar 

  • Schoenbohm LM, Strecker MR (2009) Normal faulting along the southern margin of the Puna Plateau, northwest Argentina, Tectonics, 28, TC5008. https://doi.org/10.1029/2008TC002341

  • Schreiber U, Schwab K (1991) Geochemistry of quaternary shoshonitic lavas related to the Calama-Olacapato-El Toro Lineament, NW Argentina. J S Am Earth Sci 4(1–2):73–85

    Article  Google Scholar 

  • Scheuber E, Mertmann D, Ege H, Silva-González P, Heubeck C, Reutter KJ, Jacobshagen V (2006) Exhumation and basin development related to formation of the central Andean plateau, 21 S. In The Andes. Springer, Berlin, Heidelberg, pp 285–301

  • Sébrier M, Lavenu A, Fornari M, Soulas JP (1988) Tectonics and uplift in Central Andes (Peru, Bolivia and northern Chile) from Eocene to present. Géodynamique 3(1–2):85–106

    Google Scholar 

  • Settle M (1979) The structure and emplacement of cinder cone fields. Am J Science 279:1089–1107

    Article  Google Scholar 

  • Sibson RH (1974) Frictional constraints on thrust, wrench and normal faults. Nature 249(5457):542–544

    Article  Google Scholar 

  • Sibson RH (1985) A note on fault reactivation. J Struct Geol 7(6):751–754

    Article  Google Scholar 

  • Sibson RH (2004) Controls on maximum fluid overpressure defining conditions for mesozonal mineralisation. J Struct Geol 26(6–7):1127–1136

    Article  Google Scholar 

  • Solari M, Venegas C, Montecino D, Astudillo N, Cortés J, Bahamondes B, Araya C, Espinoza F (2017) Geología del área Imilac-Quebrada Guanaqueros, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 191: 88 p., 1 map at scale 1:100,000. Santiago, Chile

  • Somoza R, Ghidella ME (2005) Convergencia en el margen occidental de América del Sur durante el Cenozoico: subducción de las placas de Nazca, Farallón y Aluk. Revista De La Asociación Geológica Argentina 60(4):797–809

    Google Scholar 

  • Somoza R, Ghidella ME (2012) Late Cretaceous to recent plate motions in western South America revisited. Earth Planet Sci Lett 331:152–163

    Article  Google Scholar 

  • Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern central Andes. Annu Rev Earth Planet Sci 35:747–787

    Article  Google Scholar 

  • Tadini A, Bonali FL, Corazzato C, Cortés JA, Tibaldi A, Valentine GA (2014) Spatial distribution and structural analysis of vents in the Lunar Crater Volcanic Field (Nevada, USA). Bull Volcanol 76(11):1–15

    Article  Google Scholar 

  • Tibaldi A (1992) The role of transcurrent intra-arc tectonics in the configuration of a volcanic arc. Terra Nova 4(5):567–577

    Article  Google Scholar 

  • Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100(B12):24521–24535

    Article  Google Scholar 

  • Tibaldi A (2008) Contractional tectonics and magma paths in volcanoes. J Volcanol Geotherm Res 176:291–301. https://doi.org/10.1016/j.jvolgeores.2008.04.008

    Article  Google Scholar 

  • Tibaldi A (2015) Structure of volcano plumbing systems: a review of multi-parametric effects. J Volcanol Geotherm Res 298:85–135

    Article  Google Scholar 

  • Tibaldi A, Bonali FL (2017) Intra-arc and back-arc volcano-tectonics: magma pathways at Holocene Alaska-Aleutian volcanoes. Earth Sci Rev 167:1–26

    Article  Google Scholar 

  • Tibaldi A, Bonali FL (2018) Contemporary recent extension and compression in the central Andes. J Struct Geol 107:73–92

    Article  Google Scholar 

  • Tibaldi A, Bistacchi A, Pasquaré FA, Vezzoli L (2006) Extensional tectonics and volcano lateral collapses: insights from Ollague volcano (Chile–Bolivia) and analogue modelling. Terra Nova 18:282–289. https://doi.org/10.1111/j.1365-3121.2006.00691.x

    Article  Google Scholar 

  • Tibaldi A, Corazzato C, Rovida A (2009a) Miocene–quaternary structural evolution of the Uyuni-Atacama region, Andes of Chile and Bolivia. Tectonophysics 471(1):114–135

    Article  Google Scholar 

  • Tibaldi A, Rust D, Corazzato C, Merri A (2010) Setting the scene for self-destruction: from sheet intrusions to the structural evolution of rifted stratovolcanoes. Geosphere 6(3):189–210

    Article  Google Scholar 

  • Tibaldi A, Bonali FL, Corazzato C (2017) Structural control on volcanoes and magma paths from local- to orogen-scale: the central Andes case. Tectonophysics 699:16–41

    Article  Google Scholar 

  • Tibaldi A, Civelli G, Pecchio M (1989) Tectonic control on morphometry of cinder cones in Lanzarote and Fuerteventura, Canary Islands. Proceedings of the International Meeting on Canarian Volcanism, Lanzarote, Canary Islands. European Science Foundation, 216–219

  • Tibaldi A, Pasquarè F, Tormey D (2009b) Volcanism in reverse and strike-slip fault settings. In: New frontiers in integrated solid earth sciences. Springer, Dordrecht, pp 315–348

  • Trumbull RB, Riller U, Oncken O, Scheuber E, Munier K, Hongn F (2006) The time-space distribution of Cenozoic volcanism in the South-Central Andes: a new data compilation and some tectonic implications. The Andes. Springer, Berlin Heidelberg, pp 29–43

  • Twiss RJ, Unruh JR (1998) Analysis of fault slip inversions: do they constrain stress or strain rate? J Geophys Res: Solid Earth 103(B6):12205–12222

    Article  Google Scholar 

  • Tye A, McMillan M, Schoenbohm L, Zhou R (2022) Late Cenozoic extensional formation of the Antofalla Depression, Southern Puna Plateau, Argentina: an effect of lithospheric foundering? Tectonics 41(3):e2021TC006807

    Article  Google Scholar 

  • Venegas C, Cervetto M, Astudillo N, Espinoza F (2013) Carta Sierra Vaquillas Altas, Regiones de Antofagasta y Atacama. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 159. 1 map at scale 1:100,000. Santiago, Chile

  • Vezzoli L, Tibaldi A, Renzulli A, Menna M, Flude S (2008) Faulting-assisted lateral collapses and influence on shallow magma feeding system at Ollagüe volcano (Central Volcanic Zone, Chile-Bolivia Andes). J Volcanol Geotherm Res 171:137–159

    Article  Google Scholar 

  • Villa V, Ramírez C, Ferrando R, Montecino D, Lienlaf M (2019) Geología de las áreas Salar Punta Negra y Cerro Sur Bayo, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 1

  • Viramonte JG, Galliski MA, Saavedra VA, Aparicio A, García-Cacho GL, Escorza CM (1984) El finivulcanismo básico de la depresión de Arizaro, provincia de Salta. IX Congreso Geológico Argentino, Actas 3:234–251

    Google Scholar 

  • Watanabe T, Koyaguchi T, Seno T (1999) Tectonic stress controls on ascent and emplacement of magmas. J Volcanol Geotherm Res 91:65–78

    Article  Google Scholar 

  • Willemse EJ (1997) Segmented normal faults: correspondence between three-dimensional mechanical models and field data. J Geophys Res: Solid Earth 102(B1):675–692

    Article  Google Scholar 

  • Wörner G, Mamani M, Blum-Oeste M (2018) Magmatism in the central Andes. Elements: Int Mag Mineral Geochem Petrol 14(4):237–244

  • Yañez G, Rivera O (2019) Crustal dense blocks in the fore-arc and arc region of Chilean ranges and their role in the magma ascent and composition: breaking paradigms in the Andean metallogeny. J S Am Earth Sci 93:51–66

    Article  Google Scholar 

  • Zoback ML, Magee M (1991) Stress magnitudes in the crust: constraints from stress orientation and relative magnitude data. Philos Trans R Soc Lond Ser A: Phys Eng Sci 337(1645):181–194

Download references

Acknowledgements

We acknowledge the useful suggestion on the early version of the manuscripts by Joel Ruch and two anonymous reviewers. This study was funded by the Agencia Nacional de Investigación y Desarrollo (ANID)–PFCHA (Programa Formación de Capital Humano Avanzado) Doctorado Nacional 2019-21191039 and Argentine ANPCyT (PICT-2019-0800). The authors want to thank project CRC 1211 “Earth-Evolution at the dry limits”, specially to Dr. Eduardo Campos, for providing support to field work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Diego Jaldin, Alessandro Tibaldi; methodology: Diego Jaldin, Daniela Espinoza, Karina Luengo, Alberto Santander; formal analysis and investigation: Diego Jaldin; writing—original draft preparation: Diego Jaldin; writing—review and editing: Alessandro Tibaldi, Fabio Bonali; Laura Giambiagi, Elena Russo.

Corresponding author

Correspondence to Diego Jaldín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial responsibility: J. Ruch

This paper constitutes part of a topical collection: Volcanic processes: tectonics, deformation, geodesy, unrest.

Supplementary Information

Below is the link to the electronic supplementary material.

445_2022_1615_MOESM1_ESM.xlsx

Supplementary Table 1. Trend and plunge of each principal strain axis from Linked Bingham Methods (λ1, λ2, and λ3), P and T axis. Strike and Dip of plane of solution from Linked Bingham Methods (Marrett and Allmendinger 1990). T: Thrust, L: Left-lateral, R: Right-Lateral, N: Normal. (XLSX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaldín, D., Tibaldi, A., Bonali, F.L. et al. Compressional tectonics and volcanism: the Miocene-Quaternary evolution of the Western Cordillera (24–26°S), Central Andes. Bull Volcanol 85, 8 (2023). https://doi.org/10.1007/s00445-022-01615-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01615-y

Keywords

Navigation