Skip to main content

Advertisement

Log in

Quaternary monogenetic volcanoes in southern China: eruption styles and controlling factors

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Hainan Island-Leizhou Peninsula-Beibu Gulf volcanic field (HLBVF) in southern China (covering an area of over 7000 km2) contains at least 50 cinder cones and 12 maar volcanoes. It is one of a few barely studied volcanic fields of Quaternary age in China. The eruption styles, and controlling factors that led to the formation of this volcanic field, are thus not yet clear. This study provides a first investigation of the general geology of the HLBVF volcanoes as well as preliminary discussion of the controlling factors affecting the eruption styles. Early Pleistocene (> 1 Ma) and/or earlier (Pliocene) volcanic activity mainly occurred in the form of high-flux magmatic eruptions that formed a large amount of thick lava units and/or cinder cones, which have since experienced intense erosion. The late early Pleistocene to late Pleistocene (~ 1.08–0.03 Ma) phreatomagmatism is represented by maar volcanoes and shows that the initial eruptions were commonly phreatomagmatic events but had increasingly magmatic components in later periods, which reflects sustained, but lower magma fluxes than in the early Pleistocene. The Holocene magmatic eruptions (< 10 ka) primarily formed agglutinate, bomb, and lapilli units, as well as lava flows. These deposits were emplaced mainly by pyroclastic fallout from Hawaiian-style eruptions. This work indicates that eruption styles between magmatic and phreatomagmatic eruptions in the HLBVF were not directly related to fluctuations in annual precipitation and magma compositions. Pre-existing NW-trending faults likely controlled the vent locations, and water fed along fault zones might have supported sustained phreatomagmatism, which formed the large maar volcanoes. The fluctuation of magma fluxes, and water supply linked to long-term tropical climate changes, coupled with regional faults, were likely the three main factors that controlled eruption styles in the HLBVF.

摘要

位于中国南方的海南岛-雷州半岛-北部湾火山群 (简称:琼雷北火山群)覆盖面积超过7000 km2, 包括至少50个熔岩渣锥和12个玛珥火山, 是火山地质特征研究程度相对较低的第四纪单成因火山群。琼雷北火山群的主要喷发形式、控制因素以及火山群的成因仍然不甚清楚。本次研究是结合前人研究资料和详细的野外地质调查基础上, 探讨了琼雷北火山群主要喷发形式和控制因素。早更新世 (>1 Ma)或更早时期 (上更新世)以高通量的岩浆喷发活动为主, 形成大面积的熔岩流和熔岩渣锥, 该期火山喷发物遭受了强烈的剥蚀作用。早更新世晚期- 晚更新世 (~ 1.08-0.03 Ma)主要以射气岩浆喷发形成为主, 形成了大量的玛珥火山。研究区内形成玛珥火山的喷发形式为:早期以射气岩浆喷发为主, 晚期逐渐过渡到岩浆喷发或岩浆溢流为主, 反映了持续的低通量岩浆活动(相对于早更新世)。全新世以来(< 10 ka), 本区火山活动以岩浆喷发为主, 形成了火山集块岩、火山弹、火山砾等火山碎屑以及熔岩流, 呈现出类似于“夏威夷式”的火山喷发模式。 本次研究认为, 琼雷北单成因火山群的喷发形式(岩浆喷发或射气岩浆喷发)与气候变化(干湿程度)和岩浆成分无关。 区域上NW走向断层主要控制了火山喷发中心位置, 水沿着断层带迁移, 持续的支撑了射气岩浆喷发活动, 形成了大型玛珥火山。岩浆通量的变化、长期热带气候条件下提供了足量的地下水以及区域断层是控制琼雷北单成因火山群喷发形式的三个主要因素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amin J, Valentine GA (2017) Compound maar crater and co-eruptive scoria cone in the Lunar Crater Volcanic Field (Nevada, USA). J Volcanol Geotherm Res 339:41–51

  • Ang PS, Bebbington MS, Lindsay JM, Jenkins SF (2020) From eruption scenarios to probabilistic volcanic hazard analysis: an example of the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 397:106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

    Article  Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150

    Article  Google Scholar 

  • Auer A, Martin U, Németh K (2007) The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex - implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting. J Volcanol Geotherm Res 159:225–245

    Article  Google Scholar 

  • Bai Y, Liu C, Deng Z, Wang J, Yang X, Wang B (2003) Carbon and nitrogen elements geochemical records and paleoclimate change of Shuangchi Lake in Hainan Island. J Palaeogeogr 15:87–93 (in Chinese with English abstract)

    Google Scholar 

  • Belousov AB (2005) Distribution and eruptive mechanism of maars in the Kamchatka Peninsula. Dokl Earth Sci 406:24–27

    Article  Google Scholar 

  • Calvari S, Tanner LH (2010) The Miocene Costa Giardini diatreme, Iblean Mountains, southern Italy: model for maar-diatreme formation on a submerged carbonate platform. Bull Volcanol. https://doi.org/10.1007/s00445-010-0436-x

  • Cassidy M, Manga M, Cashman K, Bachmann O (2018) Controls on explosive-effusive volcanic eruption styles. Nat Commun 9:2839. https://doi.org/10.1038/s41467-018-05293-3

    Article  Google Scholar 

  • Castro JM, Gardner JE (2008) Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36:279–282

    Article  Google Scholar 

  • Clarke H, Troll VR, Carracedo JC (2009) Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montaña Los Erales, Tenerife, Canary Islands. J Volcanol Geotherm Res 180:225–245

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, Stéphane P, Kervyn M (2014) Endogenous and exogenous growth of the monogenetic Lemptégy volcano, Chaîne des Puys, France. Geosphere 10:998–1019

  • Fan QC, Sun Q, Li N, Sui JL (2004) Periods of volcanic activity and magma evolution of Holocene in North Hainan Island. Acta Petrol Sin 20:533–544 (in Chinese with English abstract)

    Google Scholar 

  • Fan QC, Sun Q, Long AM, Yin KF, Sui JL, Li N, Wang TH (2006) Geology and eruption history of volcanoes in Weizhou Island and Xieyang Island, Northern Bay. Acta Petrol Sin 22:1529–1537 (in Chinese with English abstract)

    Google Scholar 

  • Fan QC, Sun Q, Sui JL, Li N (2008) Trace-element and isotopic geochemistry of volcanic rocks and it’s tectonic implications in Weizhou Island and Xieyang Island, Northern Bay. Acta Petrol Sin 24:1323–1332 (in Chinese with English abstract)

    Google Scholar 

  • Farquharson JI, Amelung F (2020) Extreme rainfall triggered the 2018 rift eruption at Kīlauea Volcano. Nature 580:491–495

    Article  Google Scholar 

  • Flower MFJ, Zhang M, Chen CY, Tu K, Xie G (1992) Magmatism in the South China Basin: 2. Post-spreading Quaternary basalts from Hainan Island, South China. Chem Geol 97:65–87

    Article  Google Scholar 

  • Geshi N, Németh K, Noguchi R, Oikawa T (2019) Shift from magmatic to phreatomagmatic explosions controlled by the lateral evolution of a feeder dike in the Suoana-Kazahaya eruption, Miyakejima Volcano, Japan. Earth Planet Sci Lett 511:177–189

    Article  Google Scholar 

  • Global Volcanism Program (2013). In: Venzke, E. (Ed.), [Hainan volcanic field (Volcano Number: 275001275001)]. In: Volcanoes of the world. 4.5.5. Smithsonian Institution. Downloaded 1 July 2022. https://volcano.si.edu/volcano.cfm?vn=275001

  • Gong WM, Zhang ZH (2014) δ13C and δ15N in the sediments of Huguangyan maar lake and proxies for reconstructing paleo-productivity and paleo-environment in the Holocene. Geol J China Univ 20:582–589 (in Chinese with English abstract)

    Google Scholar 

  • Graettinger AH (2018) Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database. J Volcanol Geotherm Res 357:1–13

    Article  Google Scholar 

  • Graettinger AH, Valentine GA (2017) Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings. Bull Volcanol 79:88. https://doi.org/10.1007/s00445-017-1177-x

    Article  Google Scholar 

  • Han JW, Xiong XJ, Zhu ZY (2009) Geochemistry of late-Cenozoic basalts from Leiqiong area: the origin of EM2 and the contribution from sub-continental lithosphere mantle. Acta Petrol Sin 25:3208–3220 (in Chinese with English abstract)

    Google Scholar 

  • Ho KS, Chen JC, Juang WS (2000) Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, southern China. J Asian Earth Sci 18:307–324

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91:97–120

    Article  Google Scholar 

  • Houghton BF, Taddeucci J, Andronico D, Gonnermann HM, Pistolesi M, Patrick MR, Orr TR, Swanson DA, Edmonds M, Gaudin D, Carey RJ, Scarlato P (2016) Stronger or longer: discriminating between Hawaiian and Strombolian eruption styles. Geology 44:163–166

    Article  Google Scholar 

  • Huang J, Zhao D (2006) High-resolution mantle tomography of China and surrounding regions. J Geophys Res 111. https://doi.org/10.1029/2005JB004066

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

  • Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70:563–582

    Article  Google Scholar 

  • Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1-4):227–240

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindasy J (2013) A model for calculating eruptive volumes for monogenetic volcanoes—implication for the Quaternary Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 266:16–33

    Article  Google Scholar 

  • Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 286:101–115

    Article  Google Scholar 

  • Kereszturi G, Bebbington M, Németh K (2017) Forecasting transitions in monogenetic eruptions using the geologic record. Geology 45:283–286

    Article  Google Scholar 

  • Kósik S, Németh K, Kereszturi G, Procter JN, Zellmer GF, Geshi N (2016) Phreatomagmatic and water-influenced Strombolian eruptions of a small-volume parasitic cone complex on the southern ringplain of Mt. Ruapehu, New Zealand: facies architecture and eruption mechanisms of the Ohakune Volcanic Complex controlled by an unstable fissure eruption. J Volcanol Geotherm Res 327:99–115

    Article  Google Scholar 

  • Latutrie B, Ross PS (2019) Transition zone between the upper diatreme and lower diatreme: origin and significance at Round Butte, Hopi Buttes volcanic field, Navajo Nation, Arizona. Bull Volcanol 81:26. https://doi.org/10.1007/s00445-019-1285-x

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A (1989) A classification of igneous rocks and glossary of terms: recommendations of the IUGS, subcommission on the systematics of igneous rocks. Blackwell, Oxford

    Google Scholar 

  • Lebedev S (2000) The upper mantle beneath the western Pacific and Southeast Asia. Ph.D. thesis: Princeton University, Princeton

    Google Scholar 

  • Lebedev S, Nolet G (2003) Upper mantle beneath Southeast Asia from S velocity tomography. J Geophys Res 108(B1):2048. https://doi.org/10.1029/2000JB000073

    Article  Google Scholar 

  • Lei J, Zhao D, Steinberger B, Wu B, Shen F, Li Z (2009) New seismic constraints on the upper mantle structure of the Hainan plume. Phys Earth Planet Inter 173:33–50

    Article  Google Scholar 

  • Lenhardt N, Borah SB, Lenhardt SZ, Bumby AJ, Ibinoof MA, Salih SA (2018) The monogenetic Bayuda volcanic field, Sudan - new insights into geology and volcanic morphology. J Volcanol Geotherm Res 356:211–224

    Article  Google Scholar 

  • Li W (1984) A discussion on the crustal nature of the central and northern parts of the South China Sea. Acta Geophys Sin 27:153–166 (in Chinese)

    Google Scholar 

  • Li N, Fan QC, Wang TH, Sun Q, Sui JL (2007) Preliminary study on K-Ar chronology, petrology and geochemistry of Yandunling volcanic rocks, Hepu County, Guangxi. Acta Petrol Sin 23:1423–1430 (in Chinese with English abstract)

    Google Scholar 

  • Liu J, Negendank JFW, Wang W, Chu G, Mingram J, Guo Z, Luo X, Chen R, Liu T (2000) The distribution and geological characteristics of maar lakes in China. Quat Sci 20:78–86 (in Chinese with English abstract)

    Google Scholar 

  • Liu JQ, Ren ZY, Nichols ARL, Song MS, Qian SP, Zhang Y, Zhao PP (2015) Petrogenesis of late Cenozoic basalts from North Hainan Island: constraints from melt inclusions and their host olivines. Geochim Cosmochim Acta 152:89–121

    Article  Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock and soft-rock environments. Geolines 15:72–83

    Google Scholar 

  • Macías JL, Capra L, Arce JL, Espíndola JM, García-Palomo A, Sheridan MF (2008) Hazard map of EI Chichón volcano, Chiapas, México: constraints posed by eruptive history and computer simulations. J Volcanol Geotherm Res 177:857–873

    Google Scholar 

  • McGee LE, Millet M, Beier C, Smith IEM, Lindsay JM (2015) Mantle heterogeneity controls on small-volume basaltic volcanism. Geology 43:551–554

    Article  Google Scholar 

  • McGee LE, Smith IEM, Millet M, Handley HK, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland volcanic field, New Zealand. J Petrol 54:2125–2153

    Article  Google Scholar 

  • Mei SW (2018) The petrogenesis and geodynamic mechanism of late Cenozoic basalts in North Hainan Island. Dissertation for Master degree, University of Chinese Academy of Sciences, Guangzhou. pp 1–141 (in Chinese with English abstract)

  • Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem Geophys Geosyst 7:11007. https://doi.org/10.1029/2006GC001248

    Article  Google Scholar 

  • Németh K, Kósik S (2020) Review of explosive hydrovolcanism. Geosciences 10:–44. https://doi.org/10.3390/geosciences10020044

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232

    Article  Google Scholar 

  • Roman DC, Soldati A, Dingwell DB, Houghton BF, Shiro BR (2021) Earthquakes indicated magma viscosity during Kīlauea’s 2018 eruption. Nature 592(7853):237. https://doi.org/10.1038/s41586-021-03400-x

    Article  Google Scholar 

  • Ross PS, Delpit S, Haller MJ, Németh K, Corbella H (2011) Influence of the substrate on maar-diatreme volcanoes—an example of a mixed setting from the Pali Aike volcanic field, Argentina. J Volcanol Geotherm Res 201:253–271

    Article  Google Scholar 

  • Shen JH, Wang R, Zhu CQ (2013) Research on spatial distribution law of gray clays of Zhanjiang Formation. Rock Soil Mech 34(supp.1):331–337 (in Chinese with English abstract)

    Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29

  • Stroncik N, Schmincke HU (2002) Palagonite - a review. Int J Earth Sci 91:680–697

    Article  Google Scholar 

  • Taddeucci J, Edmonds M, Houghton B, James MR, Vergniolle S (2015) Hawaiian and Strombolian eruptions. In: Sigurdsson H (ed) The Encyclopedia of volcanoes, 2nd edn. Elsevier Inc., pp 486–503

  • Tarff RW, Day SJ (2013) Chilled margin fragmentation as a trigger for transition from Strombolian to phreatomagmatic explosive activity at Cova de Paul Crater, Santo Anto, Cape Verde Islands. Bull Volcanol 75:735. https://doi.org/10.1007/s00445-013-0735-0

    Article  Google Scholar 

  • Tu K, Flower MFJ, Carlson RW, Xie G, Chen CY, Zhang M (1992) Magmatism in the South China Basin, 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chem Geol 97:47–63

    Article  Google Scholar 

  • Valentine GA (2012) Shallow plumbing systems for small-volume basaltic volcanoes, 2: evidence from crustal xenoliths at scoria cones and maars. J Volcanol Geotherm Res 223-224:47–63

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes — processes and problems. J Volcanol Geotherm Res 177:857–873

    Article  Google Scholar 

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216

    Article  Google Scholar 

  • Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: eruptive products and processes, and post-eruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118:1313–1330

    Article  Google Scholar 

  • Valentine GA, Sottili G, Palladino DM, Taddeucci J (2015) Tephra ring interpretation in light of evolving maar-diatreme concepts: Stracciacappa maar (central Italy). J Volcanol Geotherm Res 308:19–29

    Article  Google Scholar 

  • Valentine GA, Cortés JA, Widom E, Smith EI, Rasoazanamparany C, Johnsen R, Briner JP, Harp AG, Turrin B (2017) Lunar Crater volcanic field (Reveille and Pancake ranges, Basin and Range Province, Nevada, USA). Geosphere 13:391–438. https://doi.org/10.1130/GES01428.1

    Article  Google Scholar 

  • Wang B (2001) Evolution of the Shuangchi maar lake and paleo-environmental changes in Hainan Island. Dissertation for Master degree, Sun Yat-sen University, Guangzhou, pp 1–90 (in Chinese with English abstract)

  • Wang M (2019) The age and composition of basalts in maar lakes in Leizhou Peninsula, southern China and their depositional implication. Dissertation for Master degree, Nanjing University, Nanjing, pp 1–47 (in Chinese with English abstract)

  • Wang XC, Li ZX, Li XH, Li J, Liu Y, Long WG, Zhou JB, Wang F (2012) Temperature, pressure, and composition of the mantle source region of late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones? J Petrol 53:177–233

    Article  Google Scholar 

  • Wang XJ, Bai ZD, Tan L, Wu ZL, Wang Y (2012) Maars in Xilinhot-Abaga volcanic cluster. Seismol Geol 34:440–448 (in Chinese with English abstract)

    Google Scholar 

  • Wang S, Lü H, Liu J, Negendank JFW (2007) The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan maar lake in southern China. Chin Sci Bull 52:2829–2836

  • Weinstein Y (2007) A transition from Strombolian to phreatomagmatic activity induced by a lava flow damming water in a valley. J Volcanol Geotherm Res 159:267–284

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29

    Article  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413

    Article  Google Scholar 

  • Xie ZF, Xie SS, Cai SK, Wu XJ (2010) Gravity and magnetic field characteristics and regional geological structures of northern Hainan area. Geophys Geochem Explor 34:579–582 (in Chinese with English abstract)

    Google Scholar 

  • Yan JA (2006) Paleontology and ecologic environmental evolution of the Quaternary in Hainan Island. J Palaeogeogr 8:103–115 (in Chinese with English abstract)

    Google Scholar 

  • Yan C, Wang W (2007) Relationship between the activity of the Changliu-Xiangou fault zone in late-Quaternary and volcanic activity in North Hainan Island. Technol Earthquake Disaster Prev 2:230–242 (in Chinese with English abstract)

    Google Scholar 

  • Yan QS, Shi XF, Wang KS, Bu WR, Xiao L (2008) Major element, trace element, and Sr, Nd and Pb isotope studies of Cenozoic basalts from the South China Sea. Sci China Series D (Earth Sciences) 51:550–566

    Article  Google Scholar 

  • Yan Q, Shi X, Metcalfe I, Liu S, Xu T, Komkanitnan N, Sirichaiseth T, Yuan L, Zhang Y, Zhang H (2018) Hainan mantle plume produced late Cenozoic basaltic rocks in Thailand, Southeast Asia. Sci Rep 8:2640. https://doi.org/10.1038/s41598-018-20712-7

    Article  Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock system. J Petrol 3:346–532

    Article  Google Scholar 

  • Zhao D (2007) Seismic images under 60 hot spots, search for mantle plumes. Gondwana Res 12:335–355

    Article  Google Scholar 

  • Zou HB, Fan QC (2010) U-Th isotopes in Hainan basalts: implications for sub-asthenospheric origin of EM2 mantle end member and dynamics of melting beneath Hainan Island. Lithos 116:145–152

    Article  Google Scholar 

Download references

Acknowledgements

The author appreciates Associate Editor Prof. Smellie for making very insightful comments and suggestions for revising the manuscript. My thanks also go to the two anonymous reviewers for their excellent detailed comments and suggestions which were very helpful in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Li.

Additional information

Editorial responsibility: J.L. Smellie

Supplementary information

ESM 1

(DOCX 459 kb)

ESM 2

(XLSX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Quaternary monogenetic volcanoes in southern China: eruption styles and controlling factors. Bull Volcanol 84, 79 (2022). https://doi.org/10.1007/s00445-022-01587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-022-01587-z

Keywords

Navigation