Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim Cosmochim Acta 74:7179–7195. https://doi.org/10.1016/J.GCA.2010.09.011
Article
Google Scholar
Annen C, Blundy JD, Sparks RSJ (2006) The sources of granitic melt in Deep Hot Zones. Trans R Soc Edinb Earth Sci 97:297–309. https://doi.org/10.1017/S0263593300001462
Article
Google Scholar
Annen C, Burgisser A (2020) Modeling water exsolution from a growing and solidifying felsic magma body. Lithos 105799. https://doi.org/10.1016/j.lithos.2020.105799
Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45:1565–1582. https://doi.org/10.1093/PETROLOGY/EGH019
Article
Google Scholar
Bachmann O, Huber C (2016) Silicic magma reservoirs in the Earth’s crust. Am Mineral 101:2377–2404
Article
Google Scholar
Barboni M, Boehnke P, Schmitt AK et al (2016) Warm storage for arc magmas. Proc Natl Acad Sci U S A 113:13959–13964. https://doi.org/10.1073/PNAS.1616129113/-/DCSUPPLEMENTAL
Article
Google Scholar
Bell AF, Kilburn CRJ (2012) Precursors to dyke-fed eruptions at basaltic volcanoes: Insights from patterns of volcano-tectonic seismicity at Kilauea volcano, Hawaii. Bull Volcanol 74:325–339. https://doi.org/10.1007/s00445-011-0519-3
Article
Google Scholar
Belousov A, Walter TR, Troll VR (2005) Large-scale failures on domes and stratocones situated on caldera ring faults: sand-box modeling of natural examples from Kamchatka, Russia. Bull Volcanol 67:457–468. https://doi.org/10.1007/s00445-004-0387-1
Article
Google Scholar
Bertelsen HS, Guldstrand F, Sigmundsson F et al (2021) Beyond elasticity: are Coulomb properties of the Earth’s crust important for volcano geodesy? J Volcanol Geotherm Res 410:107153. https://doi.org/10.1016/J.JVOLGEORES.2020.107153
Article
Google Scholar
Biggs J, Pritchard ME (2017) Global volcano monitoring: what does it mean when volcanoes deform? Elements 13:17–22. https://doi.org/10.2113/GSELEMENTS.13.1.17
Article
Google Scholar
Bindeman I (2008) Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev Mineral Geochem 69:445–478. https://doi.org/10.2138/RMG.2008.69.12
Article
Google Scholar
Bowen NL (1948) The granite problem and the method of multiple prejudices. In: Giluly J (ed) Origin of granite. Geological Society of America Memoirs, pp 79–80
Chapter
Google Scholar
Boyce AJ, Fulignati P, Sbrana A (2003) Deep hydrothermal circulation in a granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. J Volcanol Geotherm Res 126:243–262. https://doi.org/10.1016/S0377-0273(03)00150-1
Article
Google Scholar
Brown M (1994) The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. Earth Sci Rev 36:83–130. https://doi.org/10.1016/0012-8252(94)90009-4
Article
Google Scholar
Burchardt S, Galland O (2016) Studying volcanic plumbing systems – multidisciplinary approaches to a multifaceted problem. In: Updates in volcanology - from volcano modelling to volcano geology
Google Scholar
Burchardt S (2018) Introduction to volcanic and igneous plumbing systems-developing a discipline and common concepts. In: Volcanic and igneous plumbing systems: understanding magma transport, storage, and evolution in the Earth’s crust. Elsevier, pp 1–12
Google Scholar
Burchardt S, Walter TR, Tuffen H (2018) Growth of a volcanic edifice through plumbing system processes—volcanic rift zones, magmatic sheet-intrusion swarms and long-lived conduits. Volcan Igneous Plumb Syst:89–112. https://doi.org/10.1016/B978-0-12-809749-6.00004-2
Cashman K (1988) Crystallization of Mount St. Helens dacite: a quantitative textural approach. Bull Volcanol 50:194–209
Article
Google Scholar
Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science (80- ). https://doi.org/10.1126/science.aag3055
Christensen NI, Salisbury MH (1975) Structure and constitution of the lower oceanic crust. Rev Geophys 13:57–86. https://doi.org/10.1029/RG013I001P00057
Article
Google Scholar
Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436. https://doi.org/10.1130/G20220.1
Article
Google Scholar
Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483. https://doi.org/10.1038/nature12991
Article
Google Scholar
Cruden AR, Weinberg RF (2018) Mechanisms of magma transport and storage in the lower and middle crust—magma segregation, ascent and emplacement. In: Volcanic and igneous plumbing systems
Google Scholar
de Saint Blanquat M, Horsman E, Habert G, Morgan S, Vanderhaeghe O, Law R, Tikoff B (2011) Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs: Tectonophysics, 500:20–33
Drymoni K, Browning J, Gudmundsson A (2020) Dyke-arrest scenarios in extensional regimes: insights from field observations and numerical models, Santorini, Greece. J Volcanol Geotherm Res 396:106854. https://doi.org/10.1016/J.JVOLGEORES.2020.106854
Article
Google Scholar
Ebinger CJ, Keir D, Ayele A et al (2008) Capturing magma intrusion and faulting processes during continental rupture: seismicity of the Dabbahu (Afar) rift. Geophys J Int 174:1138–1152. https://doi.org/10.1111/J.1365-246X.2008.03877.X/2/174-3-1138-FIG011.JPEG
Article
Google Scholar
Edmonds M, Cashman KV, Holness M, Jackson M (2019) Architecture and dynamics of magma reservoirs. Philos Trans R Soc A 377. https://doi.org/10.1098/RSTA.2018.0298
Eichelberger JC, Hayes DB (1982) Magmatic model for the Mount St Helens blast of May 18, 1980. J Geophys Res 87:7727–7738. https://doi.org/10.1029/JB087iB09p07727
Article
Google Scholar
Elliott HAL, Wall F, Chakhmouradian AR et al (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 93:38–59
Article
Google Scholar
Ernst RE, Head JW, Parfitt E et al (1995) Giant radiating dyke swarms on Earth and Venus. Earth-Sci Rev 39:1–58. https://doi.org/10.1016/0012-8252(95)00017-5
Article
Google Scholar
Ernst RE, Dickson AJ, Bekker A (eds) (2021) Large igneous provinces: a driver of global environmental and biotic changes. Wiley
Google Scholar
Galland O, Bertelsen HS, Eide CH et al (2018) Storage and transport of magma in the layered crust—formation of sills and related flat-lying intrusions. Volcan Igneous Plumb Syst. https://doi.org/10.1016/B978-0-12-809749-6.00005-4
Ganino C, Arndt NT, Zhou MF et al (2008) Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineral Deposita 43:677–694. https://doi.org/10.1007/s00126-008-0191-5
Article
Google Scholar
Glazner AF (2021) Thermal constraints on the longevity, depth, and vertical extent of magmatic systems. Geochem Geophys Geosyst 22:e2020GC009459. https://doi.org/10.1029/2020GC009459
Article
Google Scholar
Glazner AF, Bartley JM, Coleman DS (2016) We need a new definition for ‘magma’. EOS Trans Am Geophys Union 97. https://doi.org/10.1029/2016EO059741
Gudmundsson MT, Jónsdóttir K, Hooper A et al (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science (80- ) 353. https://doi.org/10.1126/science.aaf8988
Guldstrand F, Galland O, Hallot E, Burchardt S (2018) Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation. Front Earth Sci. https://doi.org/10.3389/feart.2018.00007
Hoek JD, Seitz HM (1995) Continental mafic dyke swarms as tectonic indicators: an example from the Vestfold Hills, East Antarctica. Precambrian Res 75:121–139. https://doi.org/10.1016/0301-9268(95)80002-Y
Article
Google Scholar
Holness MB, Humphreys MCS (2003) The Traigh Bhàn na Sgùrra Sill, Isle of Mull: flow localization in a major magma conduit. J Petrol 44:1961–1976. https://doi.org/10.1093/PETROLOGY/EGG066
Article
Google Scholar
Huber C, Townsend M, Degruyter W, Bachmann O (2019) Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat Geosci 12:762–768. https://doi.org/10.1038/s41561-019-0415-6
Article
Google Scholar
Humphreys MCS, Smith VC, Coumans JP et al (2021) Rapid pre-eruptive mush reorganisation and atmospheric volatile emissions from the 12.9 ka Laacher See eruption, determined using apatite. Earth Planet Sci Lett 576:117198. https://doi.org/10.1016/J.EPSL.2021.117198
Article
Google Scholar
Huppert HE, Sparks RSJ (1981) The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contrib Mineral Petrol 1980 753 75:279–289. https://doi.org/10.1007/BF01166768
Article
Google Scholar
Huppert HE, Turner JS (1981) A laboratory model of a replenished magma chamber. Earth Planet Sci Lett 54:144–152. https://doi.org/10.1016/0012-821X(81)90075-3
Article
Google Scholar
Huppert HE, Sparks RSJ, Turner JS (1983) Laboratory investigations of viscous effects in replenished magma chambers. Earth Planet Sci Lett 65:377–381. https://doi.org/10.1016/0012-821X(83)90175-9
Article
Google Scholar
Hutton DHW (1996) The ‘space problem’ in the emplacement of granite. Episodes 19:114–119. https://doi.org/10.18814/epiiugs/1996/v19i4/004
Article
Google Scholar
Jackson MD, Blundy J, Sparks RSJ (2018) Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564, 405–409.https://doi.org/10.1038/s41586-018-0746-2
Kavanagh JL (2018) Mechanisms of magma transport in the upper crust—dyking. Volcanic and igneous plumbing systems: understanding magma transport, storage, and evolution in the Earth’s crust, Elsevier
Google Scholar
Kavanagh JL, Engwell SL, Martin SA (2018) A review of laboratory and numerical modelling in volcanology. Solid Earth 9:531–571. https://doi.org/10.5194/se-9-531-2018
Article
Google Scholar
King M, Member H, David A et al (1957) Mechanics of hydraulic fracturing. Trans AIME 210:153–168. https://doi.org/10.2118/686-G
Article
Google Scholar
Köpping J, Magee C, Cruden AR et al (2022) The building blocks of igneous sheet intrusions: insights from 3-D seismic reflection data. Geosphere 18:156–182. https://doi.org/10.1130/GES02390.1
Article
Google Scholar
Kruger W, Latypov R (2020) Fossilized solidification fronts in the Bushveld Complex argue for liquid-dominated magmatic systems. Nat Commun 111 11:1–11. https://doi.org/10.1038/s41467-020-16723-6
Article
Google Scholar
Kavanagh JL, Annen CJ, Burchardt S, Chalk C, Gallant E, Morin JS, Williams R (2022) Volcanologists - Who are we and where are we going? Bull Volcanol (in press)
Krumbholz M, Hieronymus CF, Burchardt S et al (2014) Weibull-distributed dyke thickness reflects probabilistic character of host-rock strength. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms4272
Article
Google Scholar
Lees JM (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167:37–56. https://doi.org/10.1016/j.jvolgeores.2007.06.008
Article
Google Scholar
Magee C, Muirhead JD, Karvelas A et al (2016) Lateral magma flow in mafic sill complexes. Geosphere 12. https://doi.org/10.1130/GES01256.1
Marinoni LB (2001) Crustal extension from exposed sheet intrusions : review and method proposal. J Volcanol Geotherm Res 107(1–3):27–46
Marsh B (2004) A magmatic mush column Rosetta stone: the McMurdo Dry Valleys of Antarctica. Eos (Washington DC) 85:497–502
Google Scholar
Martin SA, Kavanagh JL, Biggin AJ, Utley JEP (2019) The origin and evolution of magnetic fabrics in mafic sills. Front Earth Sci 7:64. https://doi.org/10.3389/FEART.2019.00064/BIBTEX
Article
Google Scholar
Mattsson T, Burchardt S, Almqvist BSG, Ronchin E (2018) Syn-emplacement fracturing in the Sandfell laccolith, eastern Iceland—implications for rhyolite intrusion growth and volcanic hazards. Front Earth Sci 6:5. https://doi.org/10.3389/feart.2018.00005
Article
Google Scholar
McNutt SR (2005) Volcanic seismology. Annu. Rev. Earth Planet Sci 32:461–491. https://doi.org/10.1146/ANNUREV.EARTH.33.092203.122459
Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc London Ser A Math Phys Sci 234:1–23. https://doi.org/10.1098/RSPA.1956.0011
Article
Google Scholar
Neal CA, Brantley SR, Antolik L et al (2019) Volcanology: the 2018 rift eruption and summit collapse of Kilauea Volcano. Science (80- ) 363:367–374. https://doi.org/10.1126/SCIENCE.AAV7046/SUPPL_FILE/PAPV2.PDF
Article
Google Scholar
Norcliffe J, Magee C, Jackson CAL et al (2021) Fault inversion contributes to ground deformation above inflating igneous sills. Volcanica 4:1–21. https://doi.org/10.30909/VOL.04.01.0121
Article
Google Scholar
Paulatto M, Moorkamp M, Hautmann S et al (2019) Vertically extensive magma reservoir revealed from joint inversion and quantitative interpretation of seismic and gravity data. J Geophys Res Solid Earth 124:11170–11191. https://doi.org/10.1029/2019JB018476
Article
Google Scholar
Petford N, Cruden AR, McCaffrey KJW (2000) Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nat 4086813(408):669–673. https://doi.org/10.1038/35047000
Article
Google Scholar
Polteau S, Mazzini A, Galland O et al (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204. https://doi.org/10.1016/J.EPSL.2007.11.015
Article
Google Scholar
Poppe S, Gilchrist J, Breard ECP, Graettinger A, Pansino S (2022) Analog experiments in volcanology: towards quantitative, upscaled and integrated models. Bull Volcanol (in press)
Pritchard ME, de Silva SL, Michelfelder G et al (2018) Synthesis: PLUTONS: investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere 14:954–982. https://doi.org/10.1130/GES01578.1
Article
Google Scholar
Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. https://doi.org/10.2138/rmg.2008.69.3
Article
Google Scholar
Read HH (1957) The granite controversy. Interscience, New York
Book
Google Scholar
Rhodes EL, Barker AK, Burchardt S et al (2021) Rapid assembly and eruption of a shallow silicic magma reservoir, Reyðarártindur Pluton, Southeast Iceland. Geochem Geophys Geosyst 22. https://doi.org/10.1029/2021GC009999
Rout SS, Blum-Oeste M, Wörner G (2021) Long-term temperature cycling in a shallow magma reservoir: insights from sanidine megacrysts at Taápaca volcano, Central Andes. J Petrol 62:1–32. https://doi.org/10.1093/PETROLOGY/EGAB010
Article
Google Scholar
Russell JK, Stephen J, Sparks R, Kavanagh JL (2019) Kimberlite volcanology: transport, ascent, and eruption. Elements 15:405–410. https://doi.org/10.2138/GSELEMENTS.15.6.405
Article
Google Scholar
Scarpa R, Gasparini P (1996) A review of volcano geophysics and volcano-monitoring methods. Monit Mitig Volcano Hazards:3–22. https://doi.org/10.1007/978-3-642-80087-0_1
Schmiedel T, Burchardt S, Mattsson T et al (2021) Emplacement and segment geometry of large, high-viscosity magmatic sheets. Minerals 11. https://doi.org/10.3390/min11101113
Senger K, Millett J, Planke S et al (2017) Effects of igneous intrusions on the petroleum system: a review. First Break 35. https://doi.org/10.3997/1365-2397.2017011
Sibbett BS (1988) Size, depth and related structures of intrusions under stratovolcanoes and associated geothermal systems. Earth-Sci Rev 25:291–309. https://doi.org/10.1016/0012-8252(88)90070-0
Article
Google Scholar
Sigmundsson F, Hreinsdóttir S, Hooper A et al (2010 4687322) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430. https://doi.org/10.1038/nature09558
Article
Google Scholar
Sigmundsson F, Hooper A, Hreinsdóttir S et al (2014) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517:191–195. https://doi.org/10.1038/nature14111
Article
Google Scholar
Sigmundsson F, Parks M, Pedersen R et al (2018) Magma movements in volcanic plumbing systems and their associated ground deformation and seismic patterns. Volcan Igneous Plumb Syst:285–322. https://doi.org/10.1016/B978-0-12-809749-6.00011-X
Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Article
Google Scholar
Spacapan JB, Galland O, Leanza HA, Planke S (2017) Igneous sill and finger emplacement mechanism in shale-dominated formations: a field study at Cuesta del Chihuido, Neuquén Basin, Argentina. J Geol Soc Lond. https://doi.org/10.1144/jgs2016-056
Spacapan JB, Palma JO, Galland O et al (2018) Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: a case study in the northern Neuquén Basin, Argentina. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2018.01.018
Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 2675609 267:315–318. https://doi.org/10.1038/267315a0
Article
Google Scholar
Sparks RSJ, Annen C, Blundy JD et al (2019) Formation and dynamics of magma reservoirs. Philos Trans R Soc A 377. https://doi.org/10.1098/RSTA.2018.0019
Spera FJ, Bohrson WA (2018) Rejuvenation of crustal magma mush: a tale of multiply nested processes and timescales. Am J Sci 318:90–140. https://doi.org/10.2475/01.2018.05
Article
Google Scholar
Srivastava RK, Ernst RE, Peng P (eds) (2019) Dyke swarms of the world: a modern perspective. Springer, Singapore
Google Scholar
Stephens TL, Walker RJ, Healy D et al (2017) Igneous sills record far-field and near-field stress interactions during volcano construction: Isle of Mull, Scotland. Earth Planet Sci Lett 478:159–174. https://doi.org/10.1016/J.EPSL.2017.09.003
Article
Google Scholar
Stimac J, Goff F, Goff CJ (2015) Intrusion-related geothermal systems. In: The encyclopedia of volcanoes. Elsevier, pp 799–822
Svensen HH, Planke S, Neumann ER et al (2018) Sub-volcanic intrusions and the link to global climatic and environmental changes. Adv Volcanol:249–272. https://doi.org/10.1007/11157_2015_10
Thiele ST, Cruden AR, Zhang X et al (2021) Reactivation of magma pathways: insights from field observations, geochronology, geomechanical tests, and numerical models. J Geophys Res Solid Earth 126:e2020JB021477. https://doi.org/10.1029/2020JB021477
Article
Google Scholar
Tibaldi A, Pasquarè FA (2008) A new mode of inner volcano growth: the “flower intrusive structure”. Earth Planet Sci Lett 271:202–208. https://doi.org/10.1016/J.EPSL.2008.04.009
Article
Google Scholar
Turner JS, Huppert HE, Sparks RSJ (1983) An experimental investigation of volatile exsolution in evolving magma chambers. J Volcanol Geotherm Res 16:263–277. https://doi.org/10.1016/0377-0273(83)90033-1
Article
Google Scholar
Voight B, Sparks RSJ (2010) Introduction to special section on the Eruption of Soufrière Hills Volcano, Montserrat, the CALIPSO Project, and the SEA-CALIPSO Arc-Crust Imaging Experiment. https://doi.org/10.1029/2010GL044254
Voight B, Sparks RSJ, Shalev E et al (2014) The SEA-CALIPSO volcano imaging experiment at Montserrat: plans, campaigns at sea and on land, scientific results, and lessons learned. Geol Soc Mem 39:253–289. https://doi.org/10.1144/M39.15
Article
Google Scholar
Walker GPL (1992)“Coherent intrusion complexes” in large basaltic volcanoes—a new structural model. J Volcanol Geotherm Res 50(1-2):41–54
Walker GPL, Eyre PR (1995) Dike complexes in American Samoa. J Volcanol Geotherm Res 69:241–254. https://doi.org/10.1016/0377-0273(95)00041-0
Article
Google Scholar
White RS, Edmonds M, Maclennan J et al (2019) Melt movement through the Icelandic crust. Philos Trans R Soc A 377. https://doi.org/10.1098/RSTA.2018.0010
Wieser PE, Edmonds M, Maclennan J, Wheeler J (2020) Microstructural constraints on magmatic mushes under Kīlauea Volcano, Hawaiʻi. Nat Commun 111(11):1–14. https://doi.org/10.1038/s41467-019-13635-y
Article
Google Scholar