Skip to main content

Advertisement

Log in

Late Holocene Malpaís de Zacapu (Michoacán, Mexico) andesitic lava flows: rheology and eruption properties based on LiDAR image

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Few monogenetic eruptions that produced lava flows have occurred in historical times, limiting the observations of their impact on human settlements. However, rheological models based on morphological and petrological datasets can contribute to decipher the eruptive dynamics and durations of ancient eruptions. The Malpaís de Zacapu, a temporal-spatial monogenetic volcano cluster at the western margin of the Zacapu lacustrine basin (Michoacán, Mexico), offers a good opportunity to apply such models because of the availability of a high-resolution LiDAR topography from which detailed morphological data was extracted. The Malpaís de Zacapu comprises late Holocene lava flow fields emplaced in the last 3200 years by four different low magnitude volcanic eruptions: Infiernillo, Malpaís Las Víboras, Capaxtiro, and Malpaís Prieto. Jointly these eruptions produced thick andesitic block lava flows covering an area of 38.3 km2 with a volume of ~ 4.4 km3. The lava viscosities at eruption vents were estimated from petro-textural analyses and range between 103 and 106 Pa s, while the final flow apparent viscosities, obtained from dimensional analyses, vary from 108 to 1010 Pa s. We estimated the mean effusion rate and lava flow emplacement duration for each flow field. Results revealed that the more viscous flows, Malpaís Las Víboras and Malpaís Prieto, could have been emplaced in less than 3 years, while the more fluid Infiernillo probably took less than 1 year. In stark contrast, the morphologically different and more voluminous Capaxtiro flow field could have been emplaced in ~ 27 years. These findings can help to evaluate the impact that these eruptions had on adjacent pre-Hispanic populations, known to have inhabited the region since at least 3000 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albert H, Larrea P, Costa F, Widom E, Siebe C (2020) Crystals reveal magma convection during melt transport in dike-fed eruptions. Sci Rep 10(1):Article 11632 1-10. https://doi.org/10.1038/s41598-020-68421-4

    Article  Google Scholar 

  • Arnauld C, Faugère-Kalfon B (1998) Evolución de la ocupación humana en el centro-norte de Michoacán (Proyecto Michoacán, CEMCA) y la emergencia del Estado Tarasco. In: Darras V (ed) Génesis, culturas y espacios en Michoacán. CEMCA, México, pp 13–34

    Chapter  Google Scholar 

  • Arnauld C, Carot P, Fauvet-Berthelot MF (1993) Arqueología de las Lomas en la Cuenca Lacustre de Zacapu, Michoacán, México. Cuadernos de Estudios Michoacanos 5. Centro de Estudios Mexicanos y Centramericanos, México, p 230

    Book  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105° - 99° W) Mexico. Contrib Min Petrol 143(6):641–663

    Article  Google Scholar 

  • Carr BB, Clarke AB, Vanderkluysen L (2019) Arrowsmith JR (2019) Mechanisms of lava flow emplacement during an effusive eruption of Sinabung Volcano (Sumatra, Indonesia). J Volcanol Geotherm Res 382:137–148. https://doi.org/10.1016/j.jvolgeores.2018.03.002

    Article  Google Scholar 

  • Carrasco-Núñez G (1997) Lava flow growth inferred from morphometric parameters: a case study of Citlaltepetl volcano. Mexico Geol Mag 134(2):151–162

    Article  Google Scholar 

  • Cas RAF, Wright JV (1988) Volcanic sucessions: modern and ancient. xviii, London, Boston, Sydney, Wellington, Allen & Unwin, pp. 528

  • Cashman KV, Thornber C, Kauahikaua JP (1999) Cooling and crystallization of lava in open channels, and the transition of pāhoehoe lava to ‘a‘ā. Bull Volcanol 61:306–323. https://doi.org/10.1007/s004450050299

    Article  Google Scholar 

  • Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75:681. https://doi.org/10.1007/s00445-012-0681-2

    Article  Google Scholar 

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:102–120. https://doi.org/10.1016/j.epsl.2013.09.022

    Article  Google Scholar 

  • Chevrel MO, Guilbaud M-N, Siebe C (2016a) The AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78(4):1–32. https://doi.org/10.1007/s00445-016-1020-9

    Article  Google Scholar 

  • Chevrel MO, Guilbaud M-N, Siebe C, Salinas S (2016b) The AD 1250 El Metate shield volcano (Michoacán): Mexico´s most voluminous Holocene eruption and its significance for archaeology and hazards. The Holocene 26(3):471–488

    Article  Google Scholar 

  • Cigolini C, Borgia A, Casertano L (1984) Intra-crater activity, ‘a‘ā-block lava, viscosity and flow dynamics: Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 20:155–176. https://doi.org/10.1016/0377-0273(84)90072-6

    Article  Google Scholar 

  • Crisp J, Cashman KV, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177. https://doi.org/10.1029/93JB02973

    Article  Google Scholar 

  • Darras V (1998) Génesis, culturas y espacios en Michoacán. Centro de Estudios Centroamericanos, México, p 142

    Book  Google Scholar 

  • Darras V, Mireles C, Siebe C, Quezada O, Castañeda A, Reyes-Guzmán N (2017) The other stone: Dacite quarries and workshops in the Tarascan prehispanic territory, Michoacán. México J Archaeol Sci Rep 12(4):219–231. https://doi.org/10.1016/j.jasrep.2017.01.034

    Article  Google Scholar 

  • Deardorff ND, Cashman KV (2012) Emplacement conditions of the c. 1,600-year BP Collier Cone lava flow, Oregon: a LiDAR investigation. Bull Volcanol 74:2051–2066

    Article  Google Scholar 

  • Deligne NI, Conrey RM, Cashman KV, Champion DE, Amidon WH (2016) Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA. Geol Soc Amer Bull 128(11–12):1618–1635

    Article  Google Scholar 

  • Dietterich HR, Downs DT, Stelten ME, Zahran H (2018) Reconstructing lava flow emplacement histories with rheological and morphological analyses: the Harrat Rahat volcanic field, Kingdom of Saudi Arabia. Bull Volcanol 80:1–23

    Article  Google Scholar 

  • Dorison A (2019) Archéologie des systèmes agraires préhispaniques de la région de Zacapu, Michoacán, Mexique, VIIe-XVe siècle apr. J.- C. PhD dissertation, Paris: Université Paris 1 Panthéon-Sorbonne

  • Faugère BC (2006) Cueva de los Portales. Un sitio arcaico del norte de Michoacán, México. INAH/CEMCA, México, pp. 288

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multi-temporal LIDAR acquisition. J Geophys Res 115 (B1120): 1–17. https://doi.org/10.1029/2010JB007463

  • Fisher CT (2005) Demographic and landscape change in the lake Pátzcuaro basin, Mexico: abandoning the garden. Amer Anthropol 107(1):87–95

    Article  Google Scholar 

  • Forest M (2014) Approches spatio-archéologiques de la structure sociale des sites urbains du Malpaís de Zacapu. PhD dissertation, Paris: Université de Paris 1- Panthéon/Sobornne, 595 pp

  • Forest M, Costa L, Combey A, Dorison A, Pereira G (2019) Testing Web mapping and active learning to approach lidar data. Adv Archaeol Pract 8(1):25–39

    Article  Google Scholar 

  • Fries C (1953) Volumes and weights of pyroclastic material, lava and water erupted by Parícutin volcano, Michoacán. Mexico Trans Am Geophys Union 34(4):603–616

    Article  Google Scholar 

  • Gadow H (1930) Jorullo. The history of the volcano of Jorullo and the reclamation of the devastated district by animals and plants. Cambridge University Press, London, pp. 100

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2012) Dynamics of magma ascent in the volcanic conduit. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambrigde University Press, London, pp 55–84

  • Guilbaud M-N, Siebe C, Salinas S (2009) Excursions to Paricutin and Jorullo (Michoacán), the youngest volcanoes of the Trans-Mexican Volcanic Belt. A commemorative fieldtrip on the occasion of the 250th anniversary of Volcán Jorullo’s birthday on September 29, 1759. México: Impretei S.A., 31 p

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geother Res 96:145–159

    Article  Google Scholar 

  • Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32:377–518. https://doi.org/10.1146/annurev.fluid.32.1.477

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1992) The morphology of lava flows in planetary environments: Predictions from analog experiments. J Geophys Res 97(B13):19739. https://doi.org/10.1029/92JB01953

    Article  Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49(3):527–540

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Layer P, Salinas S, Castro-Govea R, Garduño-Monroy VH, Le Corvec N (2011) Geology, geochronology, and tectonic setting of the Jorullo Volcano region, Michoacán, México. J Volcanol Geoth Res 201:97–112. https://doi.org/10.1016/j.jvolgeores.2010.09.005

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Layer P, Salinas S (2012) Reconstruction of the volcanic history of the Tacámbaro-Paruarán area (Michoacán, México) reveals high frecuency of Holocene monogenetic eruptions. Bull Volcanol 74(5):1187–1211. https://doi.org/10.1007/s00445-012-0594-0

    Article  Google Scholar 

  • Guilbaud M-N, Siebe C, Widom E, Rasoazanamparany C, Salinas S, Castro-Govea R (2019) Petrographic, geochemical, and isotopic (Sr-Nd-Pb-Os) study of Plio-Quaternary volcanics and the Tertiary basement in the Jorullo-Tacámbaro area, Michoacán-Guanajuato Volcanic Field. México J Petrol 60(12):2317–2338. https://doi.org/10.1093/petrology/egaa006

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM + perspective. 135: 147–168. https://doi.org/10.1016/j.jvolgeores.2003.12.011

  • Harris AJL, Rowland SK (2009) In: Hoskuldsson A, Thondarson T, Larse G, Self S, Rowland S (Eds.) Effusion rate controls on lava flow length and the role of heat loss: A review. Leg. Georg. P.L. Walker, Spec Publ IAVCEI Geol Soc Lon (2): 33–51

  • Harris AJL, Rowland SK (2015) Lava flows and rheology. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes, 2nd edn. Academic Press, London, pp 321–341

    Chapter  Google Scholar 

  • Hasenaka T (1994) Size, distribution, and magma output rate for shield volcanoes of the Michoacan-Guanajuato volcanic field, Central Mexico. J Volcanol Geoth Res 63:13–31

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1985a) A compilation of location, size, and geomorphological parameters of volcanoes of the Michoacan-Guanajuato volcanic field, central Mexico. Geofis Intern 24(4):577–607

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1985b) The cinder cones of Michoacán-Guanajuato, Central Mexico: Their age, volume and distribution, and magma discharge rate. J Volcanol Geoth Res 25:105–124

    Article  Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacan-Guanajuato, Central Mexico: Petrology and chemistry. J Petrol 28:241–269

    Article  Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Roy Astr Soc 39:361–383

    Article  Google Scholar 

  • Hulme G, Fielder G (1977) Effusion rates and rheology of Lunar lavas. Philos Trans R Soc Lond S-A 285(1327)

  • INEGI (2020) Instituto Nacional de Geografía, Estadística e Informática website

  • James MR, Lane SJ, Houghton BF (2012) Unsteady explosive activity: strombolian eruptions. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes. Cambrigde University Press. 107–128

  • Jeffreys H (1925) The flow of water in an inclined channel of rectangular section. Philos Mag Series 6 49(293):793–807

    Article  Google Scholar 

  • Kilburn C (2010) Lava flows and flow fields. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego, pp 291–306

    Google Scholar 

  • Kilburn CRJ, Lopes R (1991) General patterns of flow field growth: Aa and blocky lavas. J Geophys Res 96(B12 19):721–732

    Google Scholar 

  • Kolzenburg S, Jaenicke J, Münzer U, Dingwell DB (2018) The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data – a case study on the 2014/2015 eruption at Holuhraun, Iceland. J Volcanol Geotherm Res 357:200–212. https://doi.org/10.1016/j.jvolgeores.2018.04.024

    Article  Google Scholar 

  • Krauskopf KB (1948) Lava movement at Paricutin volcano. Mexico Geol Soc Am Bull 59(12):1267–1284

    Article  Google Scholar 

  • Kshirsagar P, Siebe C, Guilbaud M-N, Salinas S (2016) Geological and environmental controls on the change of eruptive style (phreatomagmatic to Strombolian-effusive) of Late Pleistocene El Caracol tuff cone and its comparison with adjacent volcanoes around the Zacapu basin (Michoacán, México). J Volcanol Geoth Res 318:114–133. https://doi.org/10.1016/j.jvolgeores.2016.03.015

    Article  Google Scholar 

  • Larrea P, Albert H, Ubide T, Costa F, Colás V, Widom E, Siebe C (2021) From explosive vent opening to effusive outpouring: mineral micro-analytical constraints on magma dynamics and timescales at Paricutin monogenetic volcano. J Petrol. https://doi.org/10.1093/petrology/egaa112

  • Larrea P, Salinas S, Widom E, Siebe C, Abbitt RJF (2017) Compositional and volumetric development of a monogenetic lava flow field: the historical case of Paricutin (Michoacán, Mexico). J Volcanol Geoth Res 348:36–48. https://doi.org/10.1016/j.jvolgeores.2017.10.016

    Article  Google Scholar 

  • Larrea P, Siebe C, Juárez-Arriaga E, Salinas S, Ibarra H, Böhnel H (2019a) The ~AD 500–700 (Late Classic) El Astillero and El Pedregal volcanoes (Michoacán, Mexico): a new monogenetic cluster in the making? Bull Volcanol 81(10):59. https://doi.org/10.1007/s00445-019-1318-5

    Article  Google Scholar 

  • Larrea P, Widom E, Siebe C, Salinas S, Kuentz D (2019b) A re-interpretation of the petrogenesis of Paricutin volcano: Distinguishing crustal contamination from mantle heterogeneity. Chem Geol 504:66–82. https://doi.org/10.1016/j.chemgeo.2018.10.026

    Article  Google Scholar 

  • Latutrie B, Harris A, Médard E, Gurioli L (2017) Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France). Bull Volcanol 79(1):1–21. https://doi.org/10.1007/s00445-016-1084-6

    Article  Google Scholar 

  • Lavallée Y, Hess KU, Cordonnier B, Dingwell DB (2007) Non-Newtonian rheological law for highly crystalline dome lavas. Geology 35:843–846

    Article  Google Scholar 

  • LeBas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali– silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • Lipman PW, Banks NG (1987) A flow dynamics, Mauna Loa 1984. US Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lipman PW, Banks NG, Rhodes JM (1985) Degassing-induced crystallization of basaltic magma and effects on lava rheology. Nature 317:604–607

    Article  Google Scholar 

  • Mader HM, Llewellin EW, Muller SP (2013) The rheology of two-phase magmas: A review and analysis. J Volcanol Geoth Res 257:135–158

    Article  Google Scholar 

  • Mahgoub AN, Böhnel H, Siebe C, Chevrel MO (2017a) Paleomagnetic study of El Metate shield volcano (Michoacán, Mexico) confirms its monogenetic nature and young age (~1250 CE). J Volcanol Geoth Res 336:209–218. https://doi.org/10.1016/j.jvolgeores.2017.02.024

    Article  Google Scholar 

  • Mahgoub AN, Böhnel H, Siebe C, Salinas S, Guilbaud M-N (2017b) Paleomagnetically inferred ages of a cluster of Holocene monogenetic eruptions in the Tacámbaro-Puruarán area (Michoacán, México): implications for volcanic hazards. J Volcanol Geoth Res 347:360–370. https://doi.org/10.1016/j.jvolgeores.2017.10.004

    Article  Google Scholar 

  • Mahgoub AN, Reyes-Guzmán N, Böhnel H, Siebe C, Pereira G, Dorison A (2018) Paleomagnetic constraints on the ages of the Holocene Malpaís de Zacapu lava flow eruptions, Michoacán (Mexico): implications for archeology and volcanic hazards. Holocene 8(2):220–245. https://doi.org/10.1177/0959683617721323

    Article  Google Scholar 

  • Maron SH, Pierce PE (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11:80–95

    Article  Google Scholar 

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2007) Lava flow identification and aging by means of lidar intensity: Mount Etna case. J Geophys Res 112:B02201

    Google Scholar 

  • Michelet D (1992) El Centro-Norte de Michoacán: características generales de su estudio regional. El Proyecto Michoacán 1983–1987. Medio ambiente e introducción a los trabajos arqueológicos. CEMCA, México, pp 9–52

    Google Scholar 

  • Michelet D, Arnauld MC, Fauvet-Berthelot MF (1989) El Proyecto del CEMCA en Michoacán. Etapa I. Un balance TRACE 16:70–87

    Google Scholar 

  • Michelet D, Pereira G, Migeon G (2005) La llegada de los Uacúsechas a la región de Zacapu, Michoacán: Datos arqueológicos y discusión. In: Manzanilla L (ed) Reacomodos demográficos del Clásico al Posclásico en el centro de México. UNAM, México, pp 137–153

    Google Scholar 

  • Moore HJ (1987) Preliminary estimates of the theological properties of 1984 Mauna Loa lava. US Geol Surv Prof Pap 1350(99):1569–1588

    Google Scholar 

  • Muller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Trans R Soc Lond A 466:1201–1228

    Google Scholar 

  • Naranjo JA, Sparks RSJ, Staslu MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Loquimay volcano. Chile Geol Mag 12(6):657–678

    Article  Google Scholar 

  • Navarro-Ochoa C, Gavilanes-Ruiz JC, Cortes-Cortes A (2002) Movement and emplacement of lava flows at Volcan de Colima, Mexico: November 1998-Frebuary 1999. J Vol Geoth Resea 117:155–167

    Article  Google Scholar 

  • Neave D, Putirka D (2017) A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic Rift Zones. Amer Mineral 102(4):777–794

    Article  Google Scholar 

  • Nichols RL (1939) Viscosity of lava. J Geol 47:290–302

    Article  Google Scholar 

  • Nolan ML, Gutiérrez C (1979) Impact of Paricutin on five communities. In: Sheets, P.D. and Grayson, D.K. (edits.), Volcanic Activity and Human Ecology. Academic Press, New York, p 293–338

  • Pétrequin P (1994) 8000 años de la cuenca de Zacapu. Centre de Etudes Mexicaines et Centramericaines, Mexico. Cuadernos de Estudios Michoacanos 6: 144 pp.

  • Pereira G, Forest M, Jadot E, Darras V (2021) Ephemeral cities? The longevity of the Postclassic Tarascan urban sities of Zacapu Malpaís and its consequences on the migration process. In: Arnauld, M.C., Beekman, C., Pereira G. (eds), Mobility and Migration in Ancient Mesoamerican Cities. University Press of Colorado, Boulder, pp 208–231

  • Phan-Thien N, Pham DC (1997) Differential multiphase models for polydispersed suspensions and particulate solids. J Nonnewton Flud Mech 72:305–318

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 sub-terminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geoth Res 1:167–182

    Article  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. J Volcanol Geoth Res 56:108–120

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Ramírez-Uribe I, Siebe C, Chevrel MO, Fisher CT (2021) Rancho Seco monogenetic volcano (Michoacán, Mexico): Petrogenesis and lava flow emplacement based on LiDAR images. J Volcanol Geoth Res. https://doi.org/10.1016/j.jvolgeores.2020.107169

  • Ramírez-Uribe I, Siebe C, Salinas S, Guilbaud M-N, Layer P, Benowitz J (2019) 14C and 40Ar/39Ar radiometric dating and geologic setting of young lavas of Rancho Seco and Mazcuta volcanoes hosting archaeological sites at the margins of the Pátzcuaro and Zacapu lake basins (central Michoacán, Mexico). J Volcanol Geoth Res 388:1–22. https://doi.org/10.1016/j.jvolgeores.2019.106674

    Article  Google Scholar 

  • Reyes-Guzmán N, Siebe C, Chevrel MO, Guilbaud M-N, Salinas S, Layer P (2018) Geology and radiometric dating of Quaternary monogenetic volcanism in the western Zacapu lacustrine basin (Michoacán, México): implications for archeology and future hazard evaluations. Bull Volcanol 80(2):18. https://doi.org/10.1007/s00445-018-1193-5

    Article  Google Scholar 

  • Rowland SK, Jurado-Chichay Z, Ernst G, Walker GPL (2009) Pyroclastic deposits and lava flows from the 1759–1774 eruption of El Jorullo, México: aspects of ‘violent Strombolian’ activity and comparision with Parícutin. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in Volcanology: The legacy of George Walker. Geological Society, London, 2, p 105–128, Special Publications of IAVCEI

  • Tarquini S, de Michieli Vitturi M (2014) Influence of fluctuating supply on the emplacement dynamics of channelized lava flows. Bull Volcanol 76. https://doi.org/10.1007/s00445-014-0801-2

  • Tarquini S, Favalli M, Mazzarini F, Isola I, Fornaciai A (2012) Morphometric analysis of lava flow units: Case study over LIDAR-derived topography at Mount Etna. Italy J Volcanol Geoth Res 235–236:11–22. https://doi.org/10.1016/j.jvolgeores.2012.04.026

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Philos Trans R Soc Lond 274:107–118

    Google Scholar 

  • Watts WA, Bradbury JP (1982) Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat Res 17(1):56–70

    Article  Google Scholar 

  • Water LE, Lange RA (2015) An updated calibration of the plagioclase liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Min 100: 2172-2184

  • Wilcox RE (1954) Petrology of Paricutin Volcano, Mexico. US Geol Surv Bull 965C:281–353

    Google Scholar 

  • Wilson L, Head JW (1983) A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature 302:663–669

    Article  Google Scholar 

  • Younger ZP, Valentine GA, Gregg TKP (2019) ‘A’a lava emplacement and the significance of rafted pyroclastic material: Marcath volcano (Nevada, USA). Bull Volcanol 81(9):50–65

    Article  Google Scholar 

Download references

Acknowledgments

We kindly thank archaeologists O. Quezada and V. Darras for advice in regard to archaeological questions, and E.R. Jiménez for help with equations used for calculating the propagation of uncertainty when following the morphological viscosity-estimate approach. Constructive critical comments by two anonymous journal reviewers and editor H.R. Dietterich were very helpful for making further improvements to the original manuscript.

Funding

This work was financed by projects DGAPA-PAPIIT IN103618 and IN104221 granted to C. Siebe. N. Reyes-Guzmán was financed by a CONACYT graduate fellowship (2017–2019), while O.M. Chevrel was financed by a DGAPA-UNAM postdoctoral fellowship. G. Pereira’s archaeological investigations were financed by the Uacusecha Archaeological Project (Ministère de l’Europe et des Affaires Etrangères of France and CNRS) and the ANR Mesomobile project. LIDAR data were collected in 2015 by the National Center for Airborn Laser Mapping (NCALM, University of Houston) employing a Teledyne Optech Titan MW multispectral lidar mounted on a Piper Chieftain (PA-31–350) aircraft covering an area of 91.3 km2. The operation was coordinated by J.C. Fernández-Díaz (NCALM, University of Houston).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanci Reyes-Guzmán.

Additional information

Editorial responsibility: H. Dietterich

Deputy Executive Editor: J. Tadeucci

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Guzmán, N., Siebe, C., Chevrel, M.O. et al. Late Holocene Malpaís de Zacapu (Michoacán, Mexico) andesitic lava flows: rheology and eruption properties based on LiDAR image. Bull Volcanol 83, 28 (2021). https://doi.org/10.1007/s00445-021-01449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-021-01449-0

Keywords

Navigation