Skip to main content

Advertisement

Log in

Decrypting silicic magma/plug fragmentation at Azufral crater lake, Northern Andes: insights from fine to extremely fine ash morpho-chemistry

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Azufral (SW Colombia) is a dangerous silicic volcano hosting a crater lake, which serves as an excellent example of an incipient plug disruption through phreatomagmatism. We studied the youngest succession of dilute pyroclastic density currents (PDCs) onlapping the north-eastern crater rim. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy was used to carry out an automated single-particle analysis of fine to extremely fine ash. We were able to obtain fast and accurate chemical analysis and imaging of 15,098 particles within the 250–63-μm and the 63–32-μm size ranges. The 2D form and roughness parameters were determined for 4895 juvenile glassy particles and validated by 3D micro-X ray computer tomography. There are two end members of high (group 1) and low (group 2) roughness juvenile glassy particles. Group 1 comprises high-roughness glass particles with solidity values as low as 0.34 in 2D and 0.33 in 3D, and convexity values as low as 0.33 in 2D and 0.26 in 3D. Group 2 comprises low-roughness glass particles with 2D solidity values > 0.79 and 3D solidity values typically > 0.58. In this group, 2D convexity values are > 0.68 and 3D convexity values are > 0.71. Both end members are mostly discriminated by the 2D Concavity Index (0.14 to 0.77 in group 1 vs. 0.05–0.35 in group 2). The remaining group 3 comprises particles of intermediate roughness values. In this study, we show how an incipient plug developed over a short repose time might be subjected to only a few cycles of vesicle nucleation, collapse and densification, retaining the characteristics of juvenile glass. Each glassy juvenile ash type, defined by a particular morphology, roughness and microtexture can be linked to a density “stratified” conduit model. In Azufral, the capping and conduit lining dense regions and the permeable zones of the incipient plug likely cracked. The newly formed cracks could allow hydraulic forcing caused by external water and induce phreatomagmatic interaction. This interaction favoured the fine fragmentation of the plug while enhancing ongoing magmatic processes. Finally, the variations of bulk componentry provided clues on dilute pyroclastic density current transport and physical fractionation processes by secondary fragmentation, elutriation and interaction with the crater rim.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albiridov MA, Dingwell DB (2000) Three fragmentation mechanisms for highly viscous magma under rapid decompression. J Volcanol Geotherm Res 100:413–421

    Article  Google Scholar 

  • Andrews BJ, Manga M (2012) Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents. J Volcanol Geotherm Res 225-226:30–44

    Article  Google Scholar 

  • Austin-Erickson A, Büttner R, Dellino P, Ort MH, Zimanowski B (2008) Phreatomagmatic explosions of rhyolitic magma: experimental and field evidence. J Geophys Res Solid Earth 113:B11201. https://doi.org/10.1029/2008JB005731

    Article  Google Scholar 

  • Bain AA, Calder ES, Cortés JA, Cortés GP, Loughlin SC (2019) Textural and geochemical constraints on andesitic plug emplacement prior to the 2004-2010 vulcanian explosions at Galeras volcano, Colombia. Bull Volcanol 81:article 1

    Article  Google Scholar 

  • Barberi F, Cioni R, Rosi M, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and component analysis of the pyroclastic deposits. J Volcanol Geotherm Res 38:287–307

    Article  Google Scholar 

  • Belousov A, Belousova M (2001) Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karkymskoye lake, Kamchatka, Russia. In: White JDL, Riggs NR (eds) Volcaniclastic sedimentation in lacustrine settings. Blackwell Sciences, Oxford, pp 35–60

    Chapter  Google Scholar 

  • Büttner R, Dellino P, Zimanowski B (1999) Identifying magma-water interaction from surface feature of ash particles. Lett Nat 401:688–690

    Article  Google Scholar 

  • Büttner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res Solid Earth 107:2277

    Article  Google Scholar 

  • Büttner R, Dellino P, Raue H, Sonder I, Zimanowski B (2006) Stress-induced brittle fragmentation of magmatic melts: Theory and experiments. J Geophys Res 111:B08204. https://doi.org/10.1029/2005JB003958

    Article  Google Scholar 

  • Calvache ML, Cortés GP, Torres MP, Monsalve ML (2003) Geología y estratigrafia del Volcán Azufral, Colombia, 52p., INGEOMINAS (Ed. Internal Report), Bogotá, Colombia: https://miig.sgc.gov.co/Paginas/resultados.aspx?k=Calvache,%202003,%20Geolog%C3%ADa%20y%20estratigrafia%20del%20Volc%C3%A1n%20Azufral

  • Carvajal D, Alfaro C, Molano-Mendoza JC, Romero D, Mojica J (2008) Contribution to the geothermal model of azufral volcano from identification of zones hydrothermal alteration. Geol Colomb 33:99–108 http://www.ciencias.unal.edu.co/unciencias/data-file/geociencias/revistageologia/gcolombiana33/8-Carvajal.pdf

    Google Scholar 

  • Cashman K, Blundy J (2000) Degassing and crystallization of ascending andesite and dacite. Philos Trans R Soc Lond A 358:1487–1513

    Article  Google Scholar 

  • Cashman KV, Sheu B (2015) Magmatic fragmentation. Chapter 25. In: Sirgudsson H et al (eds) The encyclopaedia of volcanoes, 2nd edn. Academic, Cambridge, pp 459–471

    Chapter  Google Scholar 

  • Castilla SC, Pardo N, Larrea P, Zuluaga CA, Sarmiento S, Noguera D, Sarmiento GA (2018) Pre-eruptive conditions and pyroclastic emplacement of the last known Vulcanian eruption of Azufral Volcano, SW Colombia. J S Am Earth Sci 91:372–386. https://doi.org/10.1016/j.jsames.2018.08.007

    Article  Google Scholar 

  • Cepeda H, Acevedo A, Lesmes L (1987) Características Químicas y Petrográficas de los Volcanes Azufral, Cumbal y Chiles-Cerro Negro, Colombia. S.A. Instituto Nacional de Investigaciones Geológico Mineras, Medellín Internal Report

    Google Scholar 

  • Cioni R, D’Oriano C, Bertagnini A (2008) Fingerprinting ash deposits by their physical and textural features. J Volcanol Geotherm Res 177:277–287

    Article  Google Scholar 

  • Cioni R, Sbrana A, Vecci R (1992) Morphologic features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J Volcanol Geotherm Res 51:61–78

  • Cook E (1965) Stratigraphy of Tertiary volcanic rocks in eastern Nevada. Nev Bur Mines Rpt 11:66 p

  • Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

    Google Scholar 

  • Dellino P, La Volpe L (1996a) Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian Islands, Italy). J Volcanol Geotherm Res 71:13–29

    Article  Google Scholar 

  • Dellino P, La Volpe L (1996b) Cluster analysis on ash particles morphology features to discriminate fragmentation dynamics in explosive eruptions. Acta Vulcanol 8:31–39

    Google Scholar 

  • Dellino P, Liotino G (2002) The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J Volcanol Geotherm Res 113:1–18

    Article  Google Scholar 

  • Dingwell DB (1998) Volcanic dilemma: flow or blow? Science 273:1054–1155

    Article  Google Scholar 

  • Droux A, Delaloye M (1996) Petrography and geochemistry of Plio-Quaternary calc-alkaline volcanoes of Southwestern Colombia. J S Am Earth Sci 9:27–41

    Article  Google Scholar 

  • Dufek J, Manga M, Patel A (2012) Granular disruption during explosive volcanic eruptions. Nat Geosci Lett 5:561–564

    Article  Google Scholar 

  • Dürig T, Mele D, Dellino P, Zimanowski B (2012) Comparative analyses of glass fragments from brittle fracture experiments and volcanic ash particles. Bull Volcanol 74:691–704

    Article  Google Scholar 

  • Dürig T, Bowman MH, White JDL, Murch A, Mele D, Verolino A, Dellino P (2018) Particle-shape analyser Partisan - an open source tool for multi-standard two-dimentional particle morphometry analysis. Ann Geophys 61:VO671. https://doi.org/10.4401/ag-7865

    Article  Google Scholar 

  • Ersoy O (2010) Surface area and volume measurements of volcanic ash particles by SEM stereoscopic imaging. J Volcanol Geotherm Res 190:290–296

    Article  Google Scholar 

  • Ersoy O, Chinga G, Aydar E, Gourgaud A, Cubukcu HE, Ulusoy I (2006) Texture discrimination of volcanic ashes from different fragmentation mechanisms: a case study, Mount Nemrut stratovolcano, eastern Turkey. Comput Geosci 32:936–946

    Article  Google Scholar 

  • Ersoy O, Gourgaud A, Aydar E, Chinga G, Thouret JC (2007) Quantitative SEM analysis of volcanic ash surfaces: application to the 1982–83 Galunggung eruption (Indonesia). Geol Soc Am Bull 119:743–752

    Article  Google Scholar 

  • Ersoy O, Aydar E, Gourgaud A, Bayhan H (2008) Quantitative analysis on volcanic ash surfaces: application of extended depth-of-field (focus) algorithm for light and scanning electron microscopy and 3D reconstruction. Micron 39:128–136

    Article  Google Scholar 

  • Ersoy O, Şen E, Aydar E, Tatar I, Çelik HH (2010) Surface area and volume measurements of volcanic ash particles using micro-computed tomography (micro-CT): a comparison with scanning electron microscope (SEM) stereoscopic imaging and geometric considerations. J Volcanol Geotherm Res 196:281–286

    Article  Google Scholar 

  • Fontaine E, Stix J (1993) Evolution pétrologique et géochimique du complexe de dômes du volcan Azufral (Colombie, Amérique du Sud). C R Acad Bulg Sci. Série 2, Mécanique, Physique, Chimie, Sciences de l'Univers, Sciences de la Terre 317:1501–1508

    Google Scholar 

  • Forte P, Castro JM (2019) H2O-content and temperature limit the explosive potential or rhyolite magma during Plinian eruptions. Earth Planet Sci Lett 506:157–167

    Article  Google Scholar 

  • Freundt BA, Schmincke HU (1992) Abrasion in pyroclastic flows. Geol Rundsch 81:383–389

    Article  Google Scholar 

  • Gardner JE, Denis MH (2004) Heterogeneous bubble nucleation on Fe-Ti oxide crystals in high-silica rhyolitic melts. Geochem Cosmochim Acta 68:3587–3597

    Article  Google Scholar 

  • Giachetti T, Druitt T, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 193:215–231

    Article  Google Scholar 

  • Heiken G, Wohletz K (1985) Volcanic ash. University of California Press, Berkeley

    Google Scholar 

  • Horwell CJ, Braña LP, Sparks RSJ, Murphy MD, Hards VLA (2001) Geochemical investigation of fragmentation and physical fractionation in pyroclastic flows from the Soufrière Hills volcano, Montserrat. J Volcanol Geotherm Res 109:247–262

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) Vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton B, White JDL, Van Eaton AR (2015) Phreatomagmatic and related eruption styles. In: Sirgudsson H et al (eds) The encyclopaedia of volcanoes, 1st edn. Academic, London, pp 431–445

    Google Scholar 

  • Inguaggiato C, Burbano V, Rowet D, Garzón G (2017) Geochemical processes assessed by Rare Earth Elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia). Appl Geochem 79:65–74

    Article  Google Scholar 

  • Kilgour G, Manville V, Della Pasqua F, Graettinger A, Hodgson KA, Jolly GE (2010) The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J Volcanol Geotherm Res 191:1–14

    Article  Google Scholar 

  • Kilgour G, Gates S, Kennedy B, Farquhar A, McSporran A, Asher C (2019) Phreatic eruption dynamics derived from deposit analysis: a case study from a small, phreatic eruption from Whakāri/White Island, New Zealand. Earth Planets Space 71:36

    Article  Google Scholar 

  • Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Soc Lond 140:939–994

    Article  Google Scholar 

  • Krumbein WC (1934) Size frequency distributions of sediments. J Sediment Petrol 4:65–77

    Article  Google Scholar 

  • Laskin A, Cowin JO (2001) Automated single-particle SEM/EDX analysis of submicrometer particles down to 0.1 μm. Anal Chem 73:1023–1029

    Article  Google Scholar 

  • Lavallée Y, Benson PM, Heap MJ, Flaws A, Hess KU, Dingwell DB (2012) Volcanic conduit failure as a trigger to magma fragmentation. Bull Volcanol 74:11–13

    Article  Google Scholar 

  • Lavallée Y, Benson PM, Heap MJ, Hess KU, Flaws A, Schillinger B, Meredith PG, Dingwell DB (2013) Reconstructing magma failure and degassing network of dome building eruptions. Geology 41:515–518

    Article  Google Scholar 

  • Liu EJ, Cashman KV, Rust AC (2015) Optimising shape analysis to quantify volcanic ash morphology. GeoResJ 8:14–30

    Article  Google Scholar 

  • Liu EJ, Cashman KV, Rust AC, Höskuldsson A (2017) Contrasting mechanisms of magma fragmentation during coeval magmatic and hydromagmatic activity: the Hverfjall Fires fissure eruption, Iceland. Bull Volcanol 79:article 68

    Article  Google Scholar 

  • Manga M, Patel A, Dufek J (2011) Rounding of pumice clasts during transport: field measurements and laboratory studies. Bull Volcanol 73:321–333

    Article  Google Scholar 

  • Mastin LG, Witter JB (2000) The hazards of eruptions through lakes and seawater. J Volcanol Geotherm Res 97:195–214

    Article  Google Scholar 

  • Meier MF, Mildenberger T, Locher R, Rausch J, Zünd T, Neururer C, Ruckstuhl A, Grobéty B (2018) A model based two-stage classifier for airborne particles analyzed with Computer Controlled Scanning Electron Microscopy. J Aerosol Sci 123:1–6

    Article  Google Scholar 

  • Mele D, Dellino P, Sulpizio R, Braia G (2011) A systematic investigation on the aerodynamics of ash particles. J Volcanol Geotherm Res 203:1–11

    Article  Google Scholar 

  • Mele D, Dioguardi F, Dellino P (2018) A study on the influence of internal structures on the shape of pyroclastic particles by X-ray microtomography investigations. Ann Geophys 61:VO670. https://doi.org/10.4401/ag-7868

    Article  Google Scholar 

  • Melnik O, Sparks SJ (2002) Dynamics of magma ascent and lava extrusion at Soufriére Hills Volcano, Montserrat. Geol Soc Lond Mem 21:153–171. https://doi.org/10.1144/GSL.MEM.2002.021.01.07

    Article  Google Scholar 

  • Michaut C, Ricard Y, Bercovici D, Sparks RSJ (2013) Eruption cyclicity at silicic volcanoes potentially caused by magmatic gas waves. Nat Geosci Lett 6:856–860

    Article  Google Scholar 

  • Montanaro C, Scheu B, Gudmundsson MT, Vogfjörd K, Reunolds HI, Dürig T, Strehlow K, Rott S, Reuschelè T, Dingwell DB (2016) Multidisciplinary constraints of hydrothermal explosions based on the 2013 Gengissig lake events, Kverkfjöll volcano, Iceland. Earth Planet Sci Lett 434:308–319

    Article  Google Scholar 

  • Moore JG (1967) Base surge in recent volcanic eruptions. Bull Volcanol 30:337–363

    Article  Google Scholar 

  • Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: an experimental determination. Bull Volcanol 67:526–538

    Article  Google Scholar 

  • Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu-Surtseyan-style eruptions witnessed on Ambae Island. Episodes 29:87–92

    Article  Google Scholar 

  • Nurfiani D, de Maisonneuve B (2018) Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles. J Volcanol Geotherm Res 354:102–114

    Article  Google Scholar 

  • Pardo N, Cronin SJ, Németh K, Brenna M, Schipper CI, Breard E, White JDL, Procter J, Stewart B, Agustín-Flores J, Moebis A, Zernack A, Kereszturi G, Lube G, Auer A, Neall V, Wallace C (2014) Perils in distinguishing phreatic from phreatomagmatic ash: insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J Volcanol Geotherm Res 286:397–414

    Article  Google Scholar 

  • Rausch J, Grobéty B, Vonlanthen P (2015) Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany). J Volcanol Geotherm Res 291:86–100

    Article  Google Scholar 

  • Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    Article  Google Scholar 

  • Rouwet D, Morrissey MM (2015) Mechanisms of Crater Lake breaching eruptions. In: Rowet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) Advances in Volcanology-Volcanic Lakes. Springer-Verlag, Berlin, pp 73–92

    Chapter  Google Scholar 

  • Sarmiento SE (2017) Mecanismos de transporte y acumulación de los depósitos más recientes del volcán Azufral. BSc thesis, Department of Geosciences, National University of Colombia, Bogotá, Colombia

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Sheets KG, Jun B, Zhou Y, Winkler J et al (2011) Topical neuroprotectin D1 attenuates experimental CNV and induces activated microglia redistribution. Investig Ophthalmol Vis Sci 52:5470–5470

    Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29

  • Skyscan (2009) Structural parameters measured by SkyScanTM CT-analyzer software, 36p. Belgium, https://www.microphotonics.com/wp-content/uploads/2016/01/CTAn_parameters.pdf

  • Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Article  Google Scholar 

  • Starostin AB, Barmin AA, Melnik OE (2005) A transient model for explosive and phreatomagmatic eruptions. J Volcanol Geotherm Res 143:133–151

    Article  Google Scholar 

  • Sulpizio R, Dellino P (2008) Sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents. In: Martí J, Gottsman J (eds) Caldera volcanism: analysis, modelling and response. Developments in Volcanology, vol 10. Elsevier, Amsterdam, pp 57–96

    Chapter  Google Scholar 

  • Taddeucci J, Pompilio M, Scarlato P (2002) Monitoring the explosive activity of the July-August 2001 eruption of Mt. Etna (Italy) by ash characterization. Geophys Res Lett 29:1230. https://doi.org/10.1029/2001GL014372

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Andronico D, Cristaldi A, Büttner R, ZImanowski B, Küppers U (2007) Advances in the study of volcanic ash. EOS 88:253–260

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31:1089–1092

    Article  Google Scholar 

  • Tuffen H, Smith R, Sammonds PR (2008) Evidence for seismogenic fracture of silicic magmas. Nature 453:511–514

    Article  Google Scholar 

  • Valentine GA, Graettinger AH, Macorps E, Ross PS, White JDL, Döhring E, Sonder I (2015) Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull Volcanol 77:article 15

    Article  Google Scholar 

  • Van Otterloo J, Cas RAF, Scutter CR (2015) The fracture behaviour of volcanic glass and relevance to quench fragmentation during deformation of hyaloclastite and phreatomagmatism. Earth Sci Rev 151:79–116

    Article  Google Scholar 

  • Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154:222–236

    Article  Google Scholar 

  • Villamil SE (2018) Mecanismos de fragmentación, transporte y acumulación de la unidad La Cortadera, del Volcán Azufral (Nariño). BSc thesis, Departamento de Geociencias, Universidad de Los Andes, Bogotá, Colombia

  • Vonlanthen P, Rausch J, Ketcham RA, Putlitz B, Baumgartner LP, Grobéty B (2015) High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: the contribution of SEM micro-computed tomography (SEMmicro-CT). J Volcanol Geotherm Res 293:1–12

    Article  Google Scholar 

  • Wadsworth FB, Witcher T, Vossen CEJ, Hess K-U, Unwin HE, Scheu B, Castro JM, Dingwell DB (2018) Combined effusive-explosive silicic volcanism straddles the multiphase viscous-to-brittle transition. Nat Commun 9:4696. https://doi.org/10.1038/s41467-018-07187-w

  • Wallace PA, Kendrick JE, Miwa T et al (2019) Petrological architecture of magmatic shear zone: a multidisciplinary investigation of strain localisation during magma ascent at Unzen Volcano, Japan. J Petrol 60:791–826

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680

    Article  Google Scholar 

  • Williams M, Bursik MI, Cortes GP, Garcia AM (2017) Correlation of eruptive products, Volcán Azufral, Colombia: Implications for rapid emplacement of domes and pyroclastic flow units. J Volcanol Geotherm Res 341:21–32

    Article  Google Scholar 

  • Wohletz KH (1983) Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies. In: Sheridan MF, Barberi F (eds) Explosive Volcanism, J Volcanol Geotherm Res, vol 17, pp 31–63

    Google Scholar 

  • Wohletz KH (1998) Pyroclastic surges and compressible two-phase flow. In: Freundt A, Rosi M (eds) From magma to tephra: modelling physical processes of explosive volcanic eruptions. North Holland, Elsevier, pp 247–312

    Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Gottesfeld EH, Roberts JJ (2009) Pore structure of volcanic clasts: measurements of permeability and electrical conductivity. Earth Planet Sci Lett 280:93–104

    Article  Google Scholar 

  • Zhang Y (1999) A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402:648–650

    Article  Google Scholar 

  • Zimanowski B, Fröhlich G, Lorenz V (1991) Quantitative experiments on phreatomagmatic explosions. J Volcanol Geotherm Res 48:341–358

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Lorenz V (1998) Premixing of magma and water in MFCI experiments. Bull Volcanol 58:491–495

    Article  Google Scholar 

  • Zimanowski B, Büttner R, Dellino P, White DL, Wohletz KH (2015) Magma-water interaction and phreatomagmatic fragmentation. In: Sigurdsson H (ed) The Encyclopaedia of Volcanoes, 2nd. edn. Elsevier, Amsterdam, pp 473–484

    Chapter  Google Scholar 

Download references

Acknowledgements

Silvia Castillo, Hector Cepeda, Sergio Sarmiento and Santiago Villamil helped during fieldwork and sieving. Esteban Gaitán designed the protocol for 3D image processing. Dragon Fly staff produced the renders of segmented juvenile particles. Minerlab Ltda. (Bogotá), Ivette Cucubuná (Universidad de Los Andes) and Dettmar dissection Technology GmbH & Co. KG (Germany) prepared thin sections. Dimitri Rouwet (INGV-Bologna, Italy) and Roberto Torres (OVSP-SGC, Pasto, Colombia) contributed with insightful discussions. Finally, we acknowledge the extensive constructive contributions from Dr. Daniela Mele (Universitá degli Studi di Bari Aldo Moro, Italy), Dr. Adrian Hornby (LMU, Germany) and the Bulletin of Volcanology Associate Editor Dr. Pierre-Simon Ross. Dr. Andrew Harris (Executive Editor of the same journal) carried out the final edits.

Funding

This project was funded by (i) the Universidad de Los Andes through the FAPA grant allocated to N. Pardo; (ii) Banco de la República Project 4308 (Bogotá), through the agreement 201905 between “Fundación para la promoción de la investigación y la tecnología” and Universidad de Los Andes; and (iii) Particle Vision (Switzerland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Pardo.

Additional information

Editorial responsibility: P-S. Ross

Supplementary Information

Online Resource 1.1

Initial Raw Results for particle discrimination: Online Resource 1.1.1. Data acquired by 2D SEM/EDX automated single-particle analysis (n=15,098). Detailed frequency (%) distributions are shown for the bulk (1.1.1), crystal (1.1.2) and glass (1.1.3) componentry. (XLSX 6012 kb)

Online Resource 1.2

Chemically classified heatmap. The resulting bulk chemical composition of each particle is comparable to EPMA data (Castilla et al. 2018) in a ternary diagram. (JPG 2396 kb)

Online Resource 2.1

2D glass morphometry. Online Resource 2.1. Morphometry data for 4,895 glassy juvenile particles. (XLSX 3663 kb)

Online Resource 2.2

Principal Component Analysis of glassy particles, using all parameters listed in Table 1. (JPG 3325 kb)

3D μX-CT results in the 2-3 to 3-4 ϕ size range subsamples of each bed-set c-type bed. Online Resource 3.1. Example videos of rendered high roughness glassy particles (MP4 17034 kb)

(MP4 21075 kb)

(MP4 23683 kb)

Example videos of rendered low roughness glassy particles (MP4 13283 kb)

(MP4 13397 kb)

Example videos of rendered intermediate roughness glassy particles (MP4 20255 kb)

(MP4 30439 kb)

(MP4 14498 kb)

(MP4 21103 kb)

Online Resource 3.4.

3D morphometry for 118 (2-3 to 3-4 ϕ sized) particles (49 juveniles), using the 3D-Convex Hull plugin of Sheets et al. (2011). (XLSX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardo, N., Avellaneda, J.D., Rausch, J. et al. Decrypting silicic magma/plug fragmentation at Azufral crater lake, Northern Andes: insights from fine to extremely fine ash morpho-chemistry. Bull Volcanol 82, 79 (2020). https://doi.org/10.1007/s00445-020-01418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-020-01418-z

Keywords

Navigation