Skip to main content
Log in

Marginally stable recent Plinian eruptions of Mt. Pelée volcano (Lesser Antilles): the P2 AD 280 eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash high into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Understanding the key physical processes governing the dynamics and stability of past volcanic columns is a fundamental problem in volcanology as well as being central to assessing specific hazards in this region and elsewhere. However, the number of cases for which the transition of regime between a stable and collapsing eruptive plume is described in detail remains too small to constrain fully theoretical models of volcanic plumes. Here we present a detailed reconstruction of the time evolution of the P2 AD 280 eruption at Mt. Pelée volcano in Martinique, to expand the database available to test physical models. The P2 sequence, which forced the first inhabitants to flee to other islands for decades as suggested by archaeological evidence, starts with a basal ash layer interpreted as the result of an initial violent laterally directed explosion to the NE of the volcano. Most of the deposit sequence is made of a pumice fall deposit interbedded with a low-concentration PDC deposit interpreted as the result of a partial column collapse. The upper pumice fall unit shows an inverse gradation and is overlain by a final high-concentration PDC deposit or locally by the correlative low-concentration PDC deposit. Field data on deposit dispersal, thickness, and grain-size distribution are used together with physical models to reconstruct the dynamic evolution of this eruption. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits is 0.67–0.88 km3 dense rock equivalent (DRE), much larger than the 0.17 km3 DRE previously estimated. We find that the mass eruption rate increased from 6 × 107 to 1.1 × 108 kg s−1, producing an initially stable 23- to 26-km-high Plinian plume, which ultimately collapsed to form a fountain. We discuss the mechanisms leading to column collapse based on published data on magmatic water contents and our estimates of grain-size distributions and mass discharge rates. The eruption started close to the plume/fountain transition and the volcanic column ultimately collapsed mainly due to an increase in mass discharge rate. This marginally stable evolution was also inferred from analysis of the P1 AD 1300 eruption deposits, suggesting consistent behavior during the recent Plinian eruptions of Mt. Pelée volcano. In these two eruptions, the transition occurred at conditions well predicted by our theoretical model of volcanic plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alibidirov M, Dingwell DB (1996) Magma fragmentation by rapid decompression. Nature 380:146–148

    Article  Google Scholar 

  • Arsandaux H (1929) L’éruption actuelle de la Montagne Pelée. Bull Volcanol 3:25–32

  • Arsandaux H (1934) L’éruption de la Montagne Pelée en 1929. Rev Scientifique 72:248–251

    Google Scholar 

  • Bardintzeff JM, Miskovsky JC, Traineau H, Westercamp D (1989) The recent pumice eruptions of Mt. Pelée, Martinique. Part II: grain-size studies and modelling the last Plinian phase P1. J Volcan Geotherm Res 38:35–48

    Article  Google Scholar 

  • Bérard B (2007) The “South-Dominica” archaeological mission: the Soufrière site. In: XXII Conference of the International Association of Caribbean Archaeology, Jul. 2007, Kingston, Jamaica

  • Bérard B, Vernet G, Kieffer G, Raynal J-P (2001) Les éruptions volcaniques de la Montagne Pelée et le premier peuplement de la Martinique. XIXème Congrès international d’Archéologie de la Caraïbe, In, pp 70–87

  • Bernard M-L, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 112:B05205

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742–761

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Boudon G (1993) La montagne Pelée, Martinique: evolution volcanologique. Societé géologique de France, Paris

    Google Scholar 

  • Boudon G, Lajoie J (1989) The 1902 Pelean deposits in the Fort Cemetery of St. Pierre, Martinique: a model for the accumulation of turbulent nuées ardentes. J Volcan Geoth Res 38:113–130

    Article  Google Scholar 

  • Boudon G, Le Friant A, Villemant B, Viode J-P (2005) Martinique. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, pp 126–145

  • Boudon G, Villemant B, Le Friant A, Paterne M, Cortijo E (2013) Role of large flank-collapse events on magma evolution of volcanoes. Insights from the Lesser Antilles Arc. J Volcan Geotherm Res 263:224–237

  • Bourdier J-L, Gourgaud A, Vincent PM (1985) Magma mixing in a main stage of formation of Montagne Pelée: the Saint Vincent-type scoria flow sequence (Martinique, F.W.I.). J Volcan Geotherm Res 25:309–332

    Article  Google Scholar 

  • Bourdier JL, Boudon G, Gourgaud A (1989) Stratigraphy of the 1902 and 1929 nuée-ardente deposits, Mt. Pelée, Martinique. J Volcan Geotherm Res 38:77–96

    Article  Google Scholar 

  • Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, Ishizuka O, Lebas E, Guyard H, IODP Expedition 340 science Party (2016) Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochem Geophys Geosyst 17(3):699–724

    Article  Google Scholar 

  • Bursik MI, Woods AW (1996) The dynamics and thermodynamics of large ash flows. Bull Volcanol 58:175–193

    Article  Google Scholar 

  • Calder ES, Cole PD, Dade WB, Druitt TH, Hoblitt RP, Huppert HE, Ritchie L, Sparks RSJ, Young SR (1999) Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophys Res Lett 26:537–540

    Article  Google Scholar 

  • Carazzo G, Kaminski E, Tait S (2008a) On the dynamics of volcanic columns: a comparison of field data with a new model of negatively buoyant jets. J Volcanol Geoth Res 178:94–103. https://doi.org/10.1016/j.jvolgeores.2008.01.002

    Article  Google Scholar 

  • Carazzo G, Kaminski E, Tait S (2008b) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J Geophys Res 113:B09201. https://doi.org/10.1029/2007JB00548

    Article  Google Scholar 

  • Carazzo G, Tait S, Kaminski E, Gardner JE (2012) The recent Plinian explosive activity of Mt. Pelée volcano (Lesser Antilles): the P1 AD 1300 eruption. Bull Volcanol 74:2187–2203

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 AD eruption of Vesuvius. Geol Soc Am Bull 99:303–314

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carey S, Sigurdsson H, Gardner JE, Criswell W (1990) Variations in column height and magma discharge during the May 18, 1980 eruption of Mount St. Helens. J Volcanol Geoth Res 43:99–112

    Article  Google Scholar 

  • Costa A, Suzuki YJ, Cerminara M, Devenish BJ, Esposito Ongaro T, Herzog M, Van Eaton AR, Denby LC, Bursik M, de' Michieli Vitturi M, Engwell S, Barsotti S, Folch A, Macedonio G, Girault F, Carazzo G, Tait S, Kaminski E, Mastin LG, Woodhouse MJ, Phillips JC, Hogg AJ, Degruyter W, Bonadonna C (2016) Results of the eruptive column model inter-comparison study. J Volcanol Geotherm Res 326:2–25

    Article  Google Scholar 

  • Dade WB, Huppert HE (1998) Long runout rockfalls. Geology 26:803–806

    Article  Google Scholar 

  • Daggit ML, Mather TA, Pyle DM, Page S (2014) AshCalc—a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3:7

    Article  Google Scholar 

  • Davidson J, Wilson M (2012) Differentiation and source processes at Mt Pelée and the Quill; active volcanoes in the Lesser Antilles arc. J Petrol 52(7–8):1493–1531

    Google Scholar 

  • Doyle EE, Hogg AJ, Mader HM, Sparks RSJ (2010) A two-layer model for the evolution and propagation of dense and dilute regions of pyroclastic currents. J Volcanol Geotherm Res 190:365–378

    Article  Google Scholar 

  • Dupuy C, Dostal J, Traineau H (1985) Geochemistry of volcanic rocks from Mt. Pelée, Martinique. J Volcanol Geotherm Res 26:147–165

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54(2):156–167

    Article  Google Scholar 

  • Fisher RV, Smith AL, Roobol MJ (1980) Destruction of St. Pierre, Martinique, by ash-cloud surges, May 8 and 20, 1902. Geology 8:472–476

    Article  Google Scholar 

  • Genevey A, Gallet Y, Boudon G (2002) Secular variation study from non-welded pyroclastic deposits from Montagne Pelée volcano, Martinique (West Indies). Earth Planet Sci Lett 201:369–382

    Article  Google Scholar 

  • Germa A, Quidelleur X, Labanieh S, Chauvel C, Lahitte P (2011) The volcanic evolution of Martinique Island: insights from K-Ar dating into the Lesser Antilles arc migration since the Oligocene. J Volcan Geotherm Res 208:122–135

    Article  Google Scholar 

  • Germa A, Lahitte P, Quidelleur X (2015) Construction and destruction of Mont Pelée volcano: volumes and rates constrained from a geomorphological model of evolution. J Geophys Res Earth Surf 120:1206–1226

    Article  Google Scholar 

  • Girault F, Carazzo G, Tait S, Ferrucci F, Kaminski E (2014) The effect of total grain-size distribution on the dynamics of turbulent volcanic plumes. Earth Plan Sci Lett 394:124–134

    Article  Google Scholar 

  • Girault F, Carazzo G, Tait S, Kaminski E (2016) Combined effects of total grain-size distribution and crosswind on the rise of eruptive volcanic columns. J Volcanol Geotherm Res 326:103–113

  • Hartmann WK (1969) Terrestrial lunar and interplanetary rock fragmentation. Icarus 10:201–213

    Article  Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103:29,759–29,779

    Article  Google Scholar 

  • Komorowski JC, Legendre Y, Caron B, Boudon G (2008) Reconstruction and analysis of sub-plinian tephra dispersal during the 1530 AD Soufriere (Guadeloupe) eruption: implications for scenario definition and hazards assessment. J Volcanol Geotherm Res 178:491–515

    Article  Google Scholar 

  • Koyaguchi T, Ohno M (2001) Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits 1. Methods. J Geophys Res 106:6499–6512

    Article  Google Scholar 

  • Koyaguchi T, Suzuki YJ, Kozono T (2010) Effects of the crater on eruption column dynamics. J Geophys Res 115:B07205

    Article  Google Scholar 

  • Kueppers U, Perugini D, Dingwell DB (2006) “Explosive energy” during volcanic eruptions from fractal analysis of pyroclasts. Earth Planet Sci Lett 248:800–807

    Article  Google Scholar 

  • Lacroix A (1904) La Montagne Pelée et ses éruptions. Masson, Paris

    Google Scholar 

  • Lajoie J, Boudon G, Bourdier J-L (1989) Depositional mechanics of the 1902 pyroclastic nuée-ardente deposits of Mt. Pelée, Martinique. J Volcanol Geotherm Res 38:131–142

    Article  Google Scholar 

  • Le Friant A, Boudon G, Deplus C, Villemant B (2003) Large-scale flank collapse events during the activity of Montagne Pelée, Martinique, Lesser Antilles. J Geophys Res 108(B1):2055

  • Lindsay JM, Smith AL, Roobol MJ, Stasiuk MV (2005) Dominica. In: Lindsay JM, Robertson REA, Shepherd JB, Ali S (eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, pp 1–48

    Google Scholar 

  • Martel C (2012) Eruption dynamics inferred from microlite crystallization experiments: application to Plinian and dome-forming eruptions of Mt Pelée (Martinique, Lesser Antilles). J Petrol 53(4):699–725

    Article  Google Scholar 

  • Martel C, Poussineau S (2007) Diversity of eruptive styles inferred from the microlites of Mt. Pelée andesite (Martinique, Lesser Antilles). J Volcanol Geotherm Res 166:233–254

    Article  Google Scholar 

  • Martel C, Pichavant M, Bourdier J-L, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée. Earth Planet Sci Lett 156:89–99

    Article  Google Scholar 

  • Martel C, Bourdier JL, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent Plinian and dome-forming eruptions at Mt. Pelée volcano (Martinique, Lesser Antilles arc). J Volcanol Geotherm Res 96:191–206

    Article  Google Scholar 

  • Mattioni M (1976) Les grandes familles de formes du saladoïde insulaire du site de Vivé à la Martinique. Proceedings of the 6th International congress for the study of the pre-Columbian cultures of the Lesser Antilles, pp 11–33

  • Michaud-Dubuy A, Carazzo G, Kaminski E, Girault F (2018) A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns. J Volcanol Geotherm Res 357:349–361

    Article  Google Scholar 

  • Neri A, Dobran F (1994) Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns. J Geophys Res 99(B6):11,833–11,857

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Perret FA (1931a) Le nouveau dôme de la Montagne Pelée. Compt Rend Acad Sci, Paris 193:1342–1344

    Google Scholar 

  • Perret FA (1931b) Le dôme recent de la Montagne Pelée. Compt Rend Acad Sci, Paris 193:1439–1442

    Google Scholar 

  • Perret FA (1935) The eruption of Mount Pelée 1929-1932. Carnegie Institution of Washington, Washington, DC, p 125

    Google Scholar 

  • Perrey A (1853) Note sur les tremblements de terre en 1851. Memoire Académie Sciences, Arts et Belles-Lettres, Dijon 2:1–65

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (1995) Mass and energy budgets of explosive volcanic eruptions. Geophys Res Lett 22:563–566

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Reimer H, Stiw J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269

    Google Scholar 

  • Quantin P, Balesdent J, Bouleau A, Delaune FC (1991) Premiers stades d’altération de ponces volaniques en climat tropical humide (Montagne Pelée, Martinique). Geoderma 50:125–148

    Article  Google Scholar 

  • Revert E (1931) La Montagne Pelée et ses dernières éruptions. Ann Geogr 40:275–291

    Article  Google Scholar 

  • Revert E (1948) Fouilles et sites précolombiens de la Martinique. Etudes rhodaniennes 23:172–176

    Article  Google Scholar 

  • Rodriguez-Loubet F (1994) Les Antilles, un des derniers peuplements précolombiens de l’Amérique. Bull Soc Préhisto Fr 91:324–332

    Article  Google Scholar 

  • Romer M (1931) La dernière eruption de la Montagne Pelée. Bull Volcanol 8:89–116

    Article  Google Scholar 

  • Romer M (1934) L’éruption de la Montagne Pelée (Martinique) de 1929 à 1933. Ann. Phys. Globe France Outre Mer 5:129–147

  • Roobol MJ, Smith AL (1976) Mount Pelée, Martinique: a pattern of alternating eruptive styles. Geology 4:521–524

    Article  Google Scholar 

  • Roobol MJ, Smith AL (1980) Pumice eruptions of the Lesser Antilles. Bull Volcanol 43:277–286

    Article  Google Scholar 

  • Roobol MJ, Smith AL (2004) Volcanology of Saba and St. Eustatius, Northern Lesser Antilles. Koninklijke nederlandse Akademie van wetenschappen

  • Ruzié L, Moreira M (2010) Magma degassing process during plinian eruptions. J Volcanol Geotherm Res 192:142–150

    Article  Google Scholar 

  • Saunders NJ (2005) The peoples of the Caribbean: an encyclopedia of Caribbean archaeology and traditional culture. ABC, Santa Barbara

    Google Scholar 

  • Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270

    Article  Google Scholar 

  • Sigurdsson H, Carey S, Fisher RV (1984) The 1982 eruptions of El Chichon volcano, Mexico: stratigraphy of pyroclastic deposits. J Volcanol Geotherm Res 23:11–37

    Article  Google Scholar 

  • Suzuki YJ, Koyaguchi T, Ogawa M, Hachisu I (2005) A numerical study of turbulent mixing in eruption clouds using a three-dimensional fluid dynamics model. J Geophys Res 110:B08201

    Article  Google Scholar 

  • Traineau H, Westercamp D, Coulon C (1983) Mélanges magmatiques à la Montagne Pelée (Martinique). Origine des éruptions de type Saint-Vincent. Bull Volcanol 46(3):243–269

    Article  Google Scholar 

  • Traineau H, Westercamp D, Bardintzeff JM, Miskovsky JC (1989) The recent pumice eruptions of Mt. Pelée volcano, Martinique. Part I: depositional sequences, description of pumiceous deposits. J Volcanol Geotherm Res 38:17–33

    Article  Google Scholar 

  • Turcotte DL (1986) Fractals and fragmentation. J Geophys Res 91:1921–1926

    Article  Google Scholar 

  • Valentine GA, Wohletz KH (1989) Numerical models of Plinian eruption columns and pyroclastic flows. J Geophys Res 94:1867–1887

    Article  Google Scholar 

  • Vidal CM, Komorowski J-C, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzo G, Lavigne F, Rodysill J, Fontijn K, Surono (2015) Dynamics of the major Plinian eruption of Samala in 1257 AD (Lombok, Indonesia). Bull Volcanol 77:73. https://doi.org/10.1007/s00445-015-0960-9

    Article  Google Scholar 

  • Villemant B, Boudon G (1998) Transition from dome-forming to plinian eruptive styles controlled by H20 and Cl degassing. Nature 392:65–69

    Article  Google Scholar 

  • Villemant B, Boudon G (1999) H20 and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286

    Article  Google Scholar 

  • Villemant B, Boudon G, Komorowski JC (1996) U-series disequilibrium in arc magmas induced by water-magma interaction. Earth Planet Sci Lett 140:259–267

    Article  Google Scholar 

  • Vincent PM, Bourdier J-L, Boudon G (1989) The primitive volcano of Mount Pelée: its construction and partial destruction by flank collapse. J Volcanol Geotherm Res 38:1–15

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption. J Volcanol Geoth Res 8:69–94

    Article  Google Scholar 

  • Westercamp D, Traineau H (1983) The past 5,000 years of volcanic activity at Mt. Pelée Martinique (F.W.I.): implications for assessment of volcanic hazards. J Volcanol Geotherm Res 17:159–185

    Article  Google Scholar 

  • Wilson L (1976) Explosive volcanic eruptions—III. Plinian eruption columns. Geophys J R Astrom Soc 45:543–556

    Article  Google Scholar 

  • Wilson L, Sparks RSJ, Walker GPL (1980) Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys J R Astrom Soc 63:117–148

    Article  Google Scholar 

  • Woods AW, Bursik MI (1991) Particle fallout, thermal disequilibrium and volcanic plumes. Bull Volcanol 53:559–570

    Article  Google Scholar 

  • Woods AW, Bower SM (1995) The decompression of volcanic jets in a crater during explosive volcanic eruptions. Earth Plan Sci Lett 131:189–205

  • Wright JV, Smith AL, Roobol MJ, Mattioli GS, Fryxell JE (2016) Distal ash hurricane (pyroclastic density current) deposits from a ca. 2000 yr B.P. Plinian-style eruption of Mount Pelée, Martinique: distribution, grain-size characteristics, and implications for future hazards. Geol Soc Am Bull 128:777–791

    Article  Google Scholar 

Download references

Acknowledgments

The authors warmly thank S. Self, two anonymous reviewers, and the editor, J. Dufek, for their constructive comments. We are very grateful to C. Martel and C. M. Vidal for fruitful discussions on magmatic water contents at Mt. Pelée volcano. We warmly thank G. Delaviel-Anger, A. Fries, and A. Michaud-Dubuy for their hard work in the field and for stimulating discussions. We thank J.E. Gardner, U. Kueppers, and D. Perugini for valuable assistance in the field and for their insightful comments on the P2 stratigraphy and grain-size distributions. We are grateful to our colleagues of the Institut National de Recherches Archéologiques Préventives, A. Jégouzo, A. Bolle, C. Martin, E. Moizan, C. Dunikowski, and O. Dayrens for sharing their field data. We are also indebted to the staff of the Mt. Pelée volcanological observatory (OVSM) for field and administrative assistance. We also thank J.-P. Dumoulin, L. Beck, E. Delque-Kolic, and C. Moreau (LMC14, CNRS UMS2572) who performed the 14C dating. This work was partially funded by the Institut National des Sciences de l’Univers—Centre National de la Recherche Scientifique progam CT3-ALEA, INSU-CNRS Artemis 2016 for 14C dating, CASAVA (ANR contract ANR-09-ANR-RISK-002), and RAVEX (ANR contract ANR-16-CE03-0002). This is IPGP contribution No. 3998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Carazzo.

Additional information

Editorial responsibility: J. Dufek

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carazzo, G., Tait, S. & Kaminski, E. Marginally stable recent Plinian eruptions of Mt. Pelée volcano (Lesser Antilles): the P2 AD 280 eruption. Bull Volcanol 81, 3 (2019). https://doi.org/10.1007/s00445-018-1265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-018-1265-6

Keywords

Navigation