Skip to main content
Log in

Thermodynamic assessment of the magmatic history of Blue Rock shield volcano, Jackson Co., Oregon: application of a new DNi (olivine-melt) geothermometer and other models

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Blue Rock is a basaltic shield volcano in the southern Oregon Cascades, north of Mt. McLoughlin, showing bulk phenocryst abundances ranging from 5 to 28 vol%, and a variety of groundmass textures. Compositional analyses of olivine and plagioclase phenocrysts and glomerocrysts allowed for the sequential application of a new \( {D}_{\mathrm{Ni}}^{\mathrm{olivine}-\mathrm{melt}} \) thermometer, a plagioclase-melt hygrometer, and a viscosity model to define olivine-in conditions for a suite of lavas erupted from this edifice. Calculated olivine-in temperatures were compared to results from the anhydrous MELTS model, and the D (Mg) model of Beattie (1993). Model results were consistent with experimental data for hydrous arc basalts with respect to temperature (1053–1146 °C), dissolved-H2O contents (0.9–2.4 wt% H2O), and viscosity (1.9–2.2 log10 Pa s), confirming the utility of these models in assessing the thermodynamic properties of mafic, hydrous arc lavas over a broad range in crystallinity, requiring only the completion of bulk geochemical and microprobe analyses. These studies also reinforced the significant and predictable role of water, affecting the compositions of crystals grown during magmatic ascent, and allowed the definition of a reasonable multi-stage eruptive sequence consistent with the degassing of magmas on ascent in the formation of this small-scale basaltic edifice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131. doi:10.2138/am-1998-9-1022

    Article  Google Scholar 

  • Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petr 115:103–111. doi:10.1007/BF00712982

    Article  Google Scholar 

  • Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petr 109:212–224. doi:10.1007/BF00306480

    Article  Google Scholar 

  • Crabtree SM, Lange RA (2011) Complex phenocryst textures and zoning patterns in andesites and dacites: evidence of degassing induced rapid crystallization? J Petrol 52:3–38. doi:10.1130/GES00650.1

    Article  Google Scholar 

  • duBray EA, John DA (2011) Petrologic, tectonic, and metallogenic evolution of the ancestral Cascades magmatic arc, Washington, Oregon, and northern California. Geosphere 7:1102–1133. doi:10.1130/GES00669.1

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid Equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petr 119:197–212. doi:10.1007/BF00307281

    Article  Google Scholar 

  • Giordano D, Romano C, Papale P, Dingwell DB (2004) The viscosity of trachytes, and comparison with basalts, phonolites, and rhyolites. Chem Geol 213:49–61. doi:10.1016/j.chemgeo.2004.08.032

    Article  Google Scholar 

  • Golightly JP (1981) Nickeliferous laterite deposits. Econ Geol, 75th Anniversary Volume 710–735.

  • Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petr 148:542–565. doi:10.1007/s00410-004-0619-6

    Article  Google Scholar 

  • Hammer JE (2006) Influence of fO2 and cooling rate on the kinetics and energetics of Fe-rich basalt crystallization. Earth Planet Sc Lett 248:618–637. doi:10.1016/j.epsl.2006.04.022

    Article  Google Scholar 

  • Herzberg C, O’Hara MJ (2002) Plume-associated ultramafic magmas of Phanerozoic age. J Petr 43:1857–1883. doi:10.1093/petrology/43.10.1857

  • Hui H, Zhang Y (2007) Toward a general viscosity equation for natural anhydrous and hydrous silicate melts. Geochim Cosmochim Acta 71:403–416. doi:10.1016/j.gca.2006.09.003

    Article  Google Scholar 

  • Kinzler RJ, Donnelly-Nolan JM, Grove TL (2000) Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas. Contrib Mineral Petr 138:1–16. doi:10.1007/PL00007657

    Article  Google Scholar 

  • Krawczynski MJ, Grove TL, Behrens H (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petr 164:317–339. doi:10.1007/s00410-012-0740-x

    Article  Google Scholar 

  • Mandler BE, Donnelly-Nolan JM, Grove TL (2014) Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon. Contrib Mineral Petr 168:1066–1090. doi:10.1007/s00410-014-1066-7

    Article  Google Scholar 

  • Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe-Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J Petrol 52:1243–1263. doi:10.1093/petrology/egq089

    Article  Google Scholar 

  • Mertzman SA (2000) K-Ar results from the southern Oregon-northern California Cascade range. Or Geol 62:15–38

    Google Scholar 

  • Peck DL, Griggs AB, Schlicker HG, Wells FG, Dole HM (1964). Geology of the central and northern parts of the western Cascade Range in Oregon, No. 449. Government Printing Office

  • Pu X, Lange RA, Moore G (2017) A comparison of olivine-melt themometers based on DMg and DNi: the effects of melt composition, temperature and pressure with applications to MORBs and hydrous arc basalts. Am Mineral (in press). doi:10.2138/am-2017-5879

    Google Scholar 

  • Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206. doi:10.1016/j.chemgeo. 2007.01.014

    Article  Google Scholar 

  • Ruscitto DM, Wallace PJ, Kent AJR (2011) Revisiting the compositions and volatile contents of olivine-hosted melt inclusions from the Mount Shasta region: implications for the formation of high-Mg andesites. Contrib Mineral Petr 162:109–132. doi:10.1007/s00410-010-0587-y

    Article  Google Scholar 

  • Wade JA, Plank T, Melson WG, Soto GJ, Hauri E (2006) The volatile content of magmas from Arenal volcano. J Volcanol Geoth Res 157:94–120. doi:10.1016/j.jvolgeores.2006.03.045

    Article  Google Scholar 

  • Wang Z, Gaetani GA (2008) Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts. Contrib Mineral Petr 156:661–678. doi:10.1007/s00410-008-0308-y

    Article  Google Scholar 

  • Waters LE, Lange RA (2012) Resolving the effects of degassing vs. magma mingling in andesites and dacites from Medicine Lake Volcano. Mineral Mag 76:2527

    Google Scholar 

  • Waters LE, Lange RA (2013) Crystal poor, multiply saturated rhyolites (obsidians) from the Cascade and Mexican arcs, evidence of degassing-induced crystallization of phenocrysts. Contrib Mineral Petr 166:731–743. doi:10.1007/s00410-013-0919-9

    Article  Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Mineral 100:2172–2184. doi:10.2138/am-2015-5232

    Article  Google Scholar 

  • Welsch B, Hammer J, Hellebrand E (2014) Phosphorus zoning reveals dentritic architecture of olivine. Geology 42:867–870. doi:10.1130/G35691.1

    Article  Google Scholar 

  • Wilson DS (1988) Tectonic history of the Juan de Fuca plate over the last 40 million years. J Geophys Res 93:11863–11876. doi:10.1029/JB093iB10p11863

    Article  Google Scholar 

Download references

Acknowledgements

Field work, bulk geochemical analyses, and thin-section manufacture were funded by a Grant-in-Aid of Research, Artistry and Scholarship Program through the University of Minnesota (#22608), and by the Howard Hughes Medical Institute, Precollege and Undergraduate Science Education Program 2012 Grants to Primarily Undergraduate Institutions (#52007564). Microprobe analyses were funded by the National Science Foundation (EAR-1551344)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Crabtree.

Additional information

Editorial responsibility: J.E. Gardner and V.S. Kamenetsky

Electronic supplementary material

ESM 1

(PDF 334 kb)

ESM 2

(PDF 389 kb)

ESM 3

(PDF 144 kb)

ESM 4

(PDF 1974 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crabtree, S.M., Huber, A. & Beck, K. Thermodynamic assessment of the magmatic history of Blue Rock shield volcano, Jackson Co., Oregon: application of a new DNi (olivine-melt) geothermometer and other models. Bull Volcanol 79, 35 (2017). https://doi.org/10.1007/s00445-017-1115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1115-y

Keywords

Navigation