Skip to main content

Advertisement

Log in

Diffuse carbon dioxide emissions from hidden subsurface structures at Asama volcano, Japan

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We measured diffuse carbon dioxide (CO2) flux and soil temperature around the summit of Asama volcano, Japan to assess the diffuse degassing structure around the summit area. Soil CO2 flux was measured using an accumulation chamber method, and the spatial distributions of CO2 flux and soil temperature were derived from the mean of 100 sequential Gaussian simulations. Results show that soil CO2 flux was high on the eastern flank of Kamayama cone and the eastern rim of Maekake crater, the outer cone. These areas mostly correspond to high-temperature anomalies. The average emission rate of diffuse CO2 was calculated to be 12.6 t day−1 (12.2–14.6 t day−1). Such diffuse emissions account for 12 % of the total (diffuse and plume) CO2 emissions from the summit area. The diffuse CO2 anomalies probably reflect permeable zones controlled by local topography and hidden fractures bordering Maekake crater. The permeable zones are connected to the low-electrical-resistivity zone inferred to indicate both a hydrothermal fluid layer and an upper sealed layer made of clay minerals. Magmatic gas from the main conduit ascends to the volcano surface through this fluid layer and the permeable zones. These insights emphasize that the pathways and the connection between the pathways and the source of diffuse CO2 combine to create the pattern of heterogeneous diffuse CO2 emission seen at the surface. Only by using a combination of gas measurements and geophysical tools can we begin to understand the dynamics of this system as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aizawa K, Ogawa Y, Hashimoto T, Koyama T, Kanda W, Yamaya Y, Mishina M, Kagiyama T (2008) Shallow resistivity structure of Asama volcano and its implications for magma ascent process in the 2004 eruption. J Volcanol Geotherm Res 173:165–177. doi:10.1016/j.jvolgeores.2008.01.016

    Article  Google Scholar 

  • Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114, B01208. doi:10.1029/2008JB005910

    Google Scholar 

  • Allard P, Carbonnelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391. doi:10.1038/351387a0

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24. doi:10.7289/V5C8276M

  • Aoki Y, Watanabe H, Koyama E, Oikawa J, Morita Y (2005) Ground deformation associated with the 2004–2005 unrest of Asama volcano, Japan. Bull Volcanol Soc Jpn 50:575–584 (in Japanese with English abstract)

    Google Scholar 

  • Aoki Y, Takeo M, Aoyama H, Fujimatsu J, Matsumoto S, Miyamachi H, Nakamichi H, Ohkura T, Ohminato T, Oikawa J, Tanada R, Tsutsui T, Yamamoto K, Yamamoto M, Yamasato H, Yamawaki T (2009) P-wave velocity structure beneath Asama volcano, Japan, inferred from active source seismic experiment. J Volcanol Geotherm Res 187:272–277. doi:10.1016/j.jvolgeores.2009.09.004

    Article  Google Scholar 

  • Aoki Y, Takeo M, Ohminato T, Nagaoka Y, Nishida K (2013) Magma pathway and its structural controls of Asama Volcano, Japan. Geol Soc Spec Publ 380:67–84. doi:10.1144/SP380.6

    Article  Google Scholar 

  • Aramaki S (1963) Geology of Asama volcano. J Fac Sci Univ Tokyo Sec 2 14:229–443

    Google Scholar 

  • Aramaki S (1993) Geological map of Asama volcano 1:50,000. Geological map of volcanoes. Geological Survey of Japan (in Japanese with English abstract)

  • Baubron J-C, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344:51–53. doi:10.1038/344051a0

    Article  Google Scholar 

  • Baubron J-C, Allard P, Sabroux JC, Tedesco D, Toutain J-P (1991) Soil gas emanations as precursory indicators of volcanic eruptions. J Geol Soc Lond 148:571–576. doi:10.1144/gsjgs.148.3.0571

    Article  Google Scholar 

  • Burton MR, Sawyer GM, Granieri D (2013) Deep carbon emissions from volcanoes. Rev Mineral Geochem 75:323–354. doi:10.2138/rmg.2013.75.11

    Article  Google Scholar 

  • Camarda M, De Gregorio S, Favara R, Gurrieri S (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective-diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim Cosmochim Acta 71:3016–3027. doi:10.1016/j.gca.2007.04.002

    Article  Google Scholar 

  • Carapezza ML, Ricci T, Ranaldi M, Tarchini L (2009) Active degassing structures of Stromboli and variations in diffuse CO2 output related to the volcanic activity. J Volcanol Geotherm Res 182:231–245. doi:10.1016/j.jvolgeores.2008.08.006

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108:2425. doi:10.1029/2002JB002165

    Google Scholar 

  • Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull Volcanol 58:41–50. doi:10.1007/s004450050124

    Article  Google Scholar 

  • Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552. doi:10.1016/S0883-2927(97)00076-0

    Article  Google Scholar 

  • Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110, B08204. doi:10.1029/2004JB003542

    Google Scholar 

  • Chiodini G, Vilardo G, Augusti V, Granieri D, Caliro S, Minopoli C, Terranova C (2007) Thermal monitoring of hydrothermal activity by permanent infrared automatic stations: results obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy). J Geophys Res 112, B12206. doi:10.1029/2007JB005140

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Avino R, Granieri D, Schmidt A (2008) Carbon isotopic composition of soil CO2 efflux, a powerful method to discriminate different sources feeding soil CO2 degassing in volcanic-hydrothermal areas. Earth Planet Sci Lett 274:372–379. doi:10.1016/j.epsl.2008.07.051

    Article  Google Scholar 

  • D’Alessandro W, Giammanco S, Parello F, Valenza M (1997) CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bull Volcanol 58:455–458. doi:10.1007/s004450050154

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2007) Model-based geostatistics. Springer, New York

    Google Scholar 

  • Dionis SM, Pérez NM, Hernández PA, Melián G, Rodríguez F, Padrón E, Sumino H, Barrancos J, Padilla GD, Fernandes P, Bandomo Z, Silva S, Pereira JM, Semedo H, Cabral J (2015) Diffuse CO2 degassing and volcanic activity at Cape Verde islands, West Africa. Earth Planets Space 67:48. doi:10.1186/s40623-015-0219-x

    Article  Google Scholar 

  • Doukas MP, McGee KA (2007) A compilation of gas emission-rate data from volcanoes of Cook Inlet (Spurr, Crater Peak, Redoubt, Iliamna, and Augustine) and Alaska Peninsula (Douglas, Fourpeaked, Griggs, Mageik, Martin, Peulik, Ukinrek Maars, and Veniaminof), Alaska, from 1995–2006. US Geol Surv Open-File Rep 2007–1400

  • Evans WC, Bergfeld D, McGimsey RG, Hunt AG (2009) Diffuse gas emissions at the Ukinrek Maars, Alaska: implications for magmatic degassing and volcanic monitoring. Appl Geochem 24:527–535. doi:10.1016/j.apgeochem.2008.12.007

    Article  Google Scholar 

  • Finizola A, Ricci T, Deiana R, Cabusson SB, Rossi M, Praticelli N, Giocoli A, Romano G, Delcher E, Suski B, Revil A, Menny P, Di Gangi F, Letort J, Peltier A, Villasante-Marcos V, Douillet G, Avard G, Lelli M (2010) Adventive hydrothermal circulation on Stromboli volcano (Aeolian Islands, Italy) revealed by geophysical and geochemical approaches: implications for general fluid flow models on volcanoes. J Volcanol Geotherm Res 196:111–119. doi:10.1016/j.jvolgeores.2010.07.022

    Article  Google Scholar 

  • Fischer TP (2008) Fluxes of volatiles (H2O, CO2, N2, Cl, F) from arc volcanoes. Geochem J 42:21–38. doi:10.2343/geochemj.42.21

    Article  Google Scholar 

  • Goff F, Love SP, Warren RG, Counce D, Obenholzner J, Siebe C, Schmidt SC (2001) Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatépetl volcano, Mexico. Chem Geol 177:133–156. doi:10.1016/S0009-2541(00)00387-9

    Article  Google Scholar 

  • Granieri D, Chiodini G, Avino R, Caliro S (2014) Carbon dioxide emission and heat release estimation for Pantelleria Island (Sicily, Italy). J Volcanol Geotherm Res 275:22–33. doi:10.1016/j.jvolgeores.2014.02.011

    Article  Google Scholar 

  • Hernández PA, Pérez NM, Fridriksson T, Egbert J, Ilyinskaya E, Thárhallsson A, Ívarsson G, Gíslason G, Gunnarsson I, Jónsson B, Padrón E, Melián G, Mori T, Notsu K (2012) Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull Volcanol 74:2435–2448. doi:10.1007/s00445-012-0673-2

    Article  Google Scholar 

  • Hernández PA, Melián G, Giammanco S, Sortino F, Barrancos J, Pérez NM, Padrón E, López M, Donovan A, Mori T, Notsu K (2015) Contribution of CO2 and H2S emitted to the atmosphere by plume and diffuse degassing from volcanoes: the Etna volcano case study. Surv Geophys 36:327–349. doi:10.1007/s10712-015-9321-7

    Article  Google Scholar 

  • Hutchison W, Mather TA, Pyle DM, Biggs J, Yirgu G (2015) Structural controls on fluid pathways in an active rift system: a case study of the Aluto volcanic complex. Geosphere 11:1–21. doi:10.1130/GES01119.1

    Article  Google Scholar 

  • Inguaggiato S, Mazot A, Diliberto IS, Inguaggiato C, Madonia P, Rouwet D, Vita F (2012) Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem Geophys Geosyst. doi:10.1029/2011GC003920

    Google Scholar 

  • Inguaggiato S, Jácome Paz MP, Mazot A, Delgado Granados H, Inguaggiato C, Vita F (2013) CO2 output discharged from Stromboli Island (Italy). Chem Geol 339:52–60. doi:10.1016/j.chemgeo.2012.10.008

    Article  Google Scholar 

  • Japan Meteorological Agency (2013) National catalogue of the active volcanoes in Japan, 4th edn. Japan Meteorological Agency, Tokyo http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm

  • Japan Meteorological Agency (2014) Volcanic activity of Asama Volcano in 2014. (in Japanese) http://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/monthly_v-act_doc/tokyo/2014y/306_14y.pdf

  • Kazahaya R, Aoki Y, Shinohara H (2015) Budget of shallow magma plumbing system at Asama Volcano, Japan, revealed by ground deformation and volcanic gas studies. J Geophys Res Solid Earth 120:2961–2973. doi:10.1002/2014JB011715

    Article  Google Scholar 

  • Kerrick DM (2001) Present and past nonanthropogenic CO2 degassing from the solid earth. Rev Geophys 39:565–585. doi:10.1029/2001RG000105

    Article  Google Scholar 

  • Koyama T, Aizawa K, Tsuji H, Kanda W, Hase H, Yamaya Y, Watanabe A, Hashimoto T, Tanaka R, Takakura S, Ogawa Y, Uyeshima M, Nagatake H, Yoshimura R, Takeo M (2013) Preliminary report of wide band MT survey in the summit area of Mt. Asama, Japan. Jpn. Geosci. Union Meeting. Chiba, Japan, SVC48–P09 (in Japanese with English abstract)

  • Martin RS, Sawyer GM, Spampinato L, Salerno GG, Ramirez C, Ilyinskaya E, Witt MLI, Mather TA, Watson IM, Phillips JC, Oppenheimer C (2010) A total volatile inventory for Masaya Volcano, Nicaragua. J Geophys Res 115, B09215. doi:10.1029/2010JB007480

    Google Scholar 

  • Moffat AJ, Millán MM (1971) The applications of optical correlation techniques to the remote sensing of SO2 plumes using sky light. Atmos Environ 5:677–690. doi:10.1016/0004-6981(71)90125-9

    Article  Google Scholar 

  • Mori T, Notsu K (2005) Remote FT-IR measurements of volcanic gas chemistry in the plume of Asama volcano. Bull Volcanol Soc Jpn 50:567–574 (in Japanese with English abstract)

    Google Scholar 

  • Mori T, Hirabayashi J, Kazahaya K, Mori T, Ohwada M, Miyashita M, Iino H, Nakahori Y (2007) A compact ultraviolet spectrometer system (COMPUSS) for monitoring volcanic SO2 emission: validation and preliminary observation. Bull Volcanol Soc Jpn 52:105–112

    Google Scholar 

  • Mörner N-A, Etiope G (2002) Carbon degassing from the lithosphere. Global Planet Change 33:185–203. doi:10.1016/S0921-8181(02)00070-X

    Article  Google Scholar 

  • Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333–334:1–8. doi:10.1016/j.epsl.2012.03.034

    Article  Google Scholar 

  • Nurhasan OY, Ujihara N, Bulent Tank S, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu-Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planets Space 58:1053–1059. doi:10.1186/BF03352610

    Article  Google Scholar 

  • Ohwada M, Kazahaya K, Mori T, Kazahaya R, Hirabayashi J, Miyashita M, Onizawa S, Mori T (2013) Sulfur dioxide emissions related to volcanic activity at Asama volcano, Japan. Bull Volcanol 75:775. doi:10.1007/s00445-013-0775-5

    Article  Google Scholar 

  • Padrón E, Hernández PA, Toulkeridis T, Pérez NM, Marrero R, Melián GV, Virgili G, Notsu K (2008) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176:163–169. doi:10.1016/j.jvolgeores.2007.11.023

    Article  Google Scholar 

  • Padrón E, Hernández PA, Pérez NM, Toulkeridis T, Melián G, Barrancos J, Virgili G, Sumino H, Notsu K (2012) Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago. Bull Volcanol 74:1509–1519. doi:10.1007/s00445-012-0610-4

    Article  Google Scholar 

  • Padrón E, Pérez NM, Rodríguez F, Melián G, Hernández PA, Sumino H, Padilla G, Barrancos J, Dionis S, Notsu K, Calvo D (2015) Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands. Bull Volcanol 77:28. doi:10.1007/s00445-015-0914-2

    Article  Google Scholar 

  • Pantaleo M, Walter TR (2014) The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model. Solid Earth 5:183–198. doi:10.5194/se-5-183-2014

    Article  Google Scholar 

  • Parkinson KJ (1981) An improved method for measuring soil respiration in the field. J Appl Ecol 18:221–228. doi:10.2307/2402491

    Article  Google Scholar 

  • Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30:683–691. doi:10.1016/j.cageo.2004.03.012

    Article  Google Scholar 

  • Peltier A, Finizola A, Douillet GA, Brothelande E, Garaebiti E (2012) Structure of an active volcano associated with a resurgent block inferred from thermal mapping: the Yasur–Yenkahe volcanic complex (Vanuatu). J Volcanol Geotherm Res 243–244:59–68. doi:10.1016/j.jvolgeores.2012.06.022

    Article  Google Scholar 

  • Revil A, Finizola A, Piscitelli S, Rizzo E, Ricci T, Crespy A, Angeletti B, Balasco M, Barde Cabusson S, Bennati L, Bolève A, Byrdina S, Carzaniga N, Di Gangi F, Morin J, Perrone A, Rossi M, Roulleau E, Suski B (2008) Inner structure of La Fossa di Vulcano (Vulcano Island, southern Tyrrhenian Sea, Italy) revealed by high-resolution electric resistivity tomography coupled with self-potential, temperature, and CO2 diffuse degassing measurements. J Geophys Res 113, B07207. doi:10.1029/2007JB005394

    Google Scholar 

  • Saito M, Matsushima T, Matsuwo N, Shimizu H (2007) Observation of SO2 and CO2 fluxes in and around the active crater of Aso Nakadake Volcano. Sci Rep Dept Earth Planet Sci Kyushu Univ 22:51–62 (in Japanese with English abstract)

    Google Scholar 

  • Sansivero F, Scarpato G, Vilardo G (2013) The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Ann Geophys 56:S0454. doi:10.4401/ag-6460

    Google Scholar 

  • Schöpa A, Pantaleo M, Walter TR (2011) Scale-dependent location of hydrothermal vents: stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. J Volcanol Geotherm Res 203:133–145. doi:10.1016/j.jvolgeores.2011.03.008

    Article  Google Scholar 

  • Shimoike Y, Kazahaya K, Shinohara H (2002) Soil gas emission of volcanic CO2 at Satsuma-Iwojima volcano, Japan. Earth Planets Space 54:239–247. doi:10.1186/BF03353023

    Article  Google Scholar 

  • Shinohara H (2005) A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J Volcanol Geotherm Res 143:319–333. doi:10.1016/j.jvolgeores.2004.12.004

    Article  Google Scholar 

  • Shinohara H, Witter JB (2005) Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophys Res Lett 32, L20308. doi:10.1029/2005GL024131

    Article  Google Scholar 

  • Shinohara H, Ohminato T, Takeo M, Tsuji H, Kazahaya R (2015) Monitoring of volcanic gas composition at Asama volcano, Japan, during 2004–2014. J Volcanol Geotherm Res 303:199–208. doi:10.1016/j.jvolgeores.2015.07.022

    Article  Google Scholar 

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149. doi:10.1016/0375-6742(74)90030-2

    Article  Google Scholar 

  • Stolper E, Holloway JR (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet Sci Lett 87:397–408. doi:10.1016/0012-821X(88)90004-0

    Article  Google Scholar 

  • Takahashi M, Yasui M (2013) Proximal volcanic geology and field excursion guide to the Asama-Maekake Volcano: historical eruptive products of the Asama-Maekake Volcano distributed around the Kuromamegawara area. Bull Volcanol Soc Jpn 58:311–328 (in Japanese)

    Google Scholar 

  • Takahashi M, Yasui M, Ichikawa Y, Kamioka Y, Asaka N, Sakagami M, Tanaka E (2007) Whole-rock major element chemistry for eruptive products of Asama-Maekake volcano, Central Japan. Proc Inst Nat Sci Nihon Univ 42:55–70 (in Japanese with English abstract)

    Google Scholar 

  • Takeo M, Aoki Y, Ohminato T, Yamamoto M (2006) Magma supply path beneath Mt. Asama volcano, Japan. Geophys Res Lett 33, L15310. doi:10.1029/2006GL026247

    Article  Google Scholar 

  • Toutain J-P, Sortino F, Baubron J-C, Richon P, Surono SS, Nonell A (2009) Structure and CO2 budget of Merapi volcano during inter-eruptive periods. Bull Volcanol 71:815–826. doi:10.1007/s00445-009-0266-x

    Article  Google Scholar 

  • Varley NR, Armienta MA (2001) The absence of diffuse degassing at Popocatépetl volcano, Mexico. Chem Geol 177:157–173. doi:10.1016/S0009-2541(00)00389-2

    Article  Google Scholar 

  • Vilardo G, Sansivero F, Chiodini G (2015) Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: a case study in the Campi Flegrei (Southern Italy). J Geophys Res Solid Earth 120:812–826. doi:10.1002/2014JB011497

    Article  Google Scholar 

  • Viveiros F, Cardellini C, Ferreira T, Caliro S, Chiodini G, Silva C (2010) Soil CO2 emissions at Furnas volcano, São Miguel Island, Azores archipelago: volcano monitoring perspectives, geomorphologic studies, and land use planning application. J Geophys Res 115, B12208. doi:10.1029/2010JB007555

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Campbell AR (2003) Carbon dioxide emissions from fumarolic ice towers, Mount Erebus volcano, Antarctica. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geol. Soc. Lond. Spec. Pub., 213, pp 231–246

  • Wardell LJ, Kyle PR, Chaffin C (2004) Carbon dioxide and carbon monoxide emission rates from an alkaline intra-plate volcano: Mt. Erebus, Antarctica. J Volcanol Geotherm Res 131:109–121. doi:10.1016/S0377-0273(03)00320-2

    Article  Google Scholar 

  • Yasui M, Koyaguchi T (1998) Formation of a pyroclastic cone in the 1783 plinian eruptions of Asama Volcano. Bull Volcanol Soc Jpn 43:457–465 (in Japanese with English abstract)

    Google Scholar 

  • Yasui M, Koyaguchi T (2004) Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone. Bull Volcanol 66:243–262. doi:10.1007/s00445-003-0308-8

    Article  Google Scholar 

  • Yasui M, Takahashi M (2015) Formation of the andesitic welded pyroclastic cones by pyroclastic eruption recorded in the summit area of Asama-Maekake volcano and the collapsed caldera wall of Kurofu volcano. Bull Volcanol Soc Jpn 60:109–123 (in Japanese with English abstract)

    Google Scholar 

  • Zlotnicki J, Vargemezis G, Mille A, Bruère F, Hammouya G (2006) State of the hydrothermal activity of Soufrière of Guadeloupe volcano inferred by VLF surveys. J Appl Geophys 58:265–279. doi:10.1016/j.jappgeo.2005.05.004

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. M. Takeo, T. Ohminato, H. Shinohara, E. Padrón, P. A. Hernández, P. Allard, M. Takahashi, M. Yasui, K. Aizawa, T. Koyama, and T. Urabe for discussion and observations. We greatly thank two anonymous reviewers for their careful and constructive comments and Executive Editor Dr. J.D.L. White and Associate Editor Dr. C. Oppenheimer for their valuable suggestions. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, under its Observation and Research Program for Prediction of Earthquakes and Volcanic Eruptions and its Earthquake and Volcano Hazards Observation and Research Program. This study was also supported by the Earthquake Research Institute cooperative research program. Soil CO2 flux meters were provided by Shizuoka University and Kyushu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Morita.

Additional information

Editorial responsibility: C. Oppenheimer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 53.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, M., Mori, T., Kazahaya, R. et al. Diffuse carbon dioxide emissions from hidden subsurface structures at Asama volcano, Japan. Bull Volcanol 78, 17 (2016). https://doi.org/10.1007/s00445-016-1008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1008-5

Keywords

Navigation