Skip to main content

Advertisement

Log in

Pore pressure embrittlement in a volcanic edifice

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The failure mode of porous rock in compression—dilatant or compactant—is largely governed by the overlying lithostatic pressure and the pressure of pore fluids within the rock (Wong, Solid Earth 102:3009–3025, 1997), both of which are subject to change in space and time within a volcanic edifice. While lithostatic pressure will tend to increase monotonously with depth due to the progressive accumulation of erupted products, pore pressures are prone to fluctuations (during periods of volcanic unrest, for example). An increase in pore fluid pressure can result in rock fracture, even at depths where the lithostatic pressure would otherwise preclude such dilatant behaviour—a process termed pore fluid-induced embrittlement. We explore this phenomenon through a series of targeted triaxial experiments on typical edifice-forming andesites (from Volcán de Colima, Mexico). We first show that increasing pore pressure over a range of timescales (on the order of 1 min to 1 day) can culminate in brittle failure of otherwise intact rock. Irrespective of the pore pressure increase rate, we record comparable accelerations in acoustic emission and strain prior to macroscopic failure. We further show that oscillating pore fluid pressures can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. We find that macroscopic failure occurs once a critical threshold of damage is surpassed, suggesting that only small increases in pore pressure may be necessary to trigger failure in previously damaged rocks. Finally, we observe that inelastic compaction of volcanic rock (as we may expect in much of the deep edifice) can be overprinted by shear fractures due to this mechanism of embrittlement. Pore fluid-induced embrittlement of edifice rock during volcanic unrest is anticipated to be highest closer to the conduit and, as a result, may assist in the development of a fractured halo zone surrounding the conduit, potentially explaining commonly observed near-conduit outgassing at many active volcanoes. Further, rock embrittlement at depth may create transient outgassing pathways by linking fracture networks near the edifice to larger-scale regional fault systems. Our experimental results affirm that pore pressure fluctuations associated with volcanic unrest may play a crucial role in dictating the evolution of a volcanic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adelinet M, Fortin J, Schubnel A, Guéguen Y (2013) Deformation modes in an Icelandic basalt: from brittle failure to localized deformation bands. J Volcanol Geotherm Res 255:15–25

    Article  Google Scholar 

  • Anderson KR, Poland MP, Johnson JH, Miklius A (2015) Episodic deflation–inflation events at Kılauea Volcano and implications for the shallow magma system. Hawaiian Volcanoes: From Source to Surface 208:229

    Google Scholar 

  • Arciniega-Ceballos A, Chouet BA, Dawson P (2003) Long-period events and tremor at Popocatepetl Volcano (1994–2000) and their broadband characteristics. Bull Volcanol 65:124–135. doi:10.1007/s00445-002-0248-8

    Google Scholar 

  • Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2(1):1–24

    Article  Google Scholar 

  • Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34(3):24–e1

    Google Scholar 

  • Baud P, Zhu W, T-f W (2000) Failure mode and weakening effect of water on sandstone. J Geophys Res Solid Earth 105(B7):16371–16389. doi:10.1029/2000JB900087

    Article  Google Scholar 

  • Baud P, Reuschlé T, Ji Y, Cheung CS, Wong TF (2015) Mechanical compaction and strain localization in Bleurswiller sandstone. Solid Earth, Journal of Geophysical Research

    Google Scholar 

  • Bean CJ, De Barros L, Lokmer I, Métaxian JP, O’Brien G, Murphy S (2014) Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nat Geosci 7(1):71–75

    Article  Google Scholar 

  • Benson PM, Heap MJ, Lavallée Y, Flaws A, Hess KU, Selvadurai APS, Dingwell DB, Schillinger B (2012) Laboratory simulations of tensile fracture development in a volcanic conduit via cyclic magma pressurisation. Earth Planet Sci Lett 349:231–239. doi:10.1016/j.epsl.2012.07.003

    Article  Google Scholar 

  • Benson PM, Vinciguerra S, Meredith PG, Young RP (2008) Laboratory simulation of volcano seismicity. Science 322(5899):249–252

    Article  Google Scholar 

  • Berryman JG (1992) Effective stress for transport properties of inhomogeneous rocks. J Geophys Res 97(B12):17,409–17,424. doi:10.1029/92JB01593

    Article  Google Scholar 

  • Biot MA (1941) General theory of three‐dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Boué A, Lesage P, Cortés G, Valette B, Reyes‐Dávila G (2015) Real‐time eruption forecasting using the material failure forecast method with a Bayesian approach. Solid Earth, Journal of Geophysical Research

    Google Scholar 

  • Brantut N, Heap MJ, Meredith PG, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi:10.1016/j.jsg.2013.03.007

    Article  Google Scholar 

  • Caricchi L, Pommier A, Pistone M, Castro J, Burgisser A, Pergini D (2011) Strain-induced magma outgassing: insights from simple-shear experiments on bubble bearing melts. Bull Volcanol 73:1245–1257. doi:10.1007/s00445-011-0471-2

    Article  Google Scholar 

  • Chouet BA (1996) Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380:309–316. doi:10.1038/380309a0

    Article  Google Scholar 

  • Collinson ASD, Neuberg JW (2012) Gas storage, transport and pressure changes in an evolving permeable volcanic edifice. J Volcanol Geoth Res 243–244:1–13. doi:10.1016/j.jvolgeores.2012.06.027

    Article  Google Scholar 

  • Costa, A., Melnik, O., and Vedeneeva, E. (2007). Thermal effects during magma ascent in conduits. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B12).

  • Day SJ (1996) Hydrothermal pore fluid and the stability of porous, permeable volcanoes. Q J Geol Soc Lond 111:77–93. doi:10.1144/GSL.SP.1996.110.01.06

    Google Scholar 

  • De Lauro E, De Martino S, Palo M, Ibañez JM (2012) Self-sustained oscillations at Volcán de Colima (México) inferred by independent component analysis. Bull Volcanol 74:279–292

    Article  Google Scholar 

  • Denlinger RP, Hoblitt RP (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27(5):459–462

    Article  Google Scholar 

  • Diller K, Clarke AB, Voight B, Neri A (2006) Mechanisms of conduit plug formation: implications for vulcanian explosions. Geophys Res Lett 33:L20302. doi:10.1029/2006GL027391

    Article  Google Scholar 

  • Donnadieau F, Merle O, Besson J-C (2001) Volcanic edifice stability during cryptodome intrusion. Bull Volcanol 63:61–72. doi:10.1007/s004450000122

    Article  Google Scholar 

  • Edmonds M, Oppenheimer C, Pyle DM, Herd RA, Thompson G (2003) SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and outgassing regime. J Volcanol Geoth Res 124:23–43. doi:10.1016/S0377-0273(03)00041-6

    Article  Google Scholar 

  • Elsworth D, Voight B (1992) Theory of dike intrusion in a saturated porous solid. J Geophys Res: Solid Earth (1978–2012) 97(B6):9105–9117. doi:10.1029/92JB00519

    Article  Google Scholar 

  • Elsworth D, Voight B, Ouyang Z, Piggott AR (1996) Poroelastic response resulting from magma intrusion, Mechanics of Poroelastic Media. Springer, Netherlands, pp 215–233

    Google Scholar 

  • Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68

    Article  Google Scholar 

  • Faulkner DR, Rutter EH (2001) Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology 29(6):503–506

    Article  Google Scholar 

  • Gaunt HE, Sammonds PR, Meredith PG, Smith R, Pallister JS (2014) Pathways for degassing during the lava dome eruption of Mount St. Helens 2004–2008. Geology 42(11):947–950. doi:10.1130/G35940.1

    Article  Google Scholar 

  • Gerst A, Savage MK (2004) Seismic anisotropy beneath Ruapehu Volcano: a possible eruption forecasting tool. Science 306:1543–1547

    Article  Google Scholar 

  • Giammanco S, Gurrieri S, Valenza M (1998) Anomalous soil CO2 degassing in relation to faults and eruptive fissures on Mount Etna (Sicily, Italy). Bull Volcanol 60(4):252–259

    Article  Google Scholar 

  • Gudmundsson A (2011) Rock fractures in geological processes. Cambridge University Press, UK

    Book  Google Scholar 

  • Gudmundsson A, Friese N, Galindo I, Philipp SL (2008) Dike-induced reverse faulting in a graben. Geology 36(2):123–126

    Article  Google Scholar 

  • Guéguen Y, Palciauskas V (1994) Introduction to the physics of rocks. Princeton University Press, UK

    Google Scholar 

  • Hagerty MT, Schwartz SY, Garces MA, Protti M (2000) Analysis of seismic and acoustic observations at Arenal Volcano, Costa Rica, 1995–1997. J Volcanol Geotherm Res 101:27–65

    Article  Google Scholar 

  • Harris AJL, Maciejewski AJH (2000) Thermal surveys of the Vulcano Fossa fumarole field 1994–1999: evidence for fumarole migration and sealing. J Volcan Geotherm Res 102:119–147

    Article  Google Scholar 

  • Harrington RM, Brodsky EE (2007) Volcanic hybrid earthquakes that are brittle‐failure events. Geophys Res Lett 34(6). doi: 10.1029/2006GL028714

  • Heap MJ, Farquharson Y, Baud P, Lavallée Y, Reuschlé T (2015a) Fracture and compaction of andesite in a volcanic edifice. Bull Volcanol 77(6):1–19

  • Heap MJ, Xu T, Kushnir ARL, Kennedy BM, Chen C-f (2015b) Fracture of magma containing overpressurised pores. Journal of Volcanology and Geothermal Research, Accepted

  • Heap MJ, Kennedy BM, Pernin N, Jacquemard L, Baud P, Farquharson JI, Dingwell DB (2015c) Mechanical behaviour and failure modes in the Whakaari (White Island volcano) hydrothermal system, New Zealand. J Volcanol Geotherm Res 295:26–42

  • Heap MJ, Lavallée Y, Petrakova L, Baud P, Reuschlé T, Varley NR, Dingwell DB (2014a) Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcán de Colima, Mexico. J. Geophys. Res. Solid Earth 119. doi: 10.1002/2013JB010521.

  • Heap, MJ., Baud, P., Meredith, P. G., Bell, A. F., and Main, I. G. (2009). Time‐dependent brittle creep in Darley Dale sandstone. J Geophys Res Solid Earth (1978–2012), 114(B7).

  • Heap MJ, Baud P, Meredith PG, Vinciguerra S, Reuschlé T (2014b) The permeability and elastic moduli of tuff from Campi Flegrei, Italy: implications for ground deformation modelling. Solid Earth 5:25–44

  • Heiken G, Wohletz K, Eichelberger JC (1988) Fracture fillings and intrusive pyroclasts, Inyo Domes, California. J Geophys Res 93:4335–4350

    Article  Google Scholar 

  • Heiligmann M, Stix J, Williams-Jones G, Lollar BS, Garzón VG (1997) Distal degassing of radon and carbon dioxide on Galeras Volcano, Colombia. J Volcanol Geotherm Res 77(1):267–283

    Article  Google Scholar 

  • Heimisson ER, Einarsson P, Sigmundsson F, Brandsdóttir B (2015) Kilometer‐scale Kaiser effect identified in Krafla Volcano. Iceland, Geophysical Research Letters

    Google Scholar 

  • Hubbert MK, Rubey WW (1959) Role of fluid pressure in mechanics of overthrust faulting: I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geo Soc Am Bull 70:115–166. doi:10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2

    Article  Google Scholar 

  • Hurwitz S, Johnston MJ (2003) Groundwater level changes in a deep well in response to a magma intrusion event on Kilauea Volcano, Hawai’i. Geophys Res Lett 30:22. doi:10.1029/2003GL018676

    Article  Google Scholar 

  • Hutchison W, Varley N, Pyle DM, Mather TA (2013) In: Pyle DL, Mather TA (eds) Remote sensing of volcanoes & volcanic processes: integrating observation & modelling. Geological Society, London, pp 203–228

    Google Scholar 

  • James MR, Lane SJ, Chouet B, Gilbert JS (2004) Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits. J Volcanol Geoth Res 129:61–82. doi:10.1016/S0377-0273(03)00232-4

    Article  Google Scholar 

  • James MR, Varley N (2012) Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima. Mexico Geophys Re Lett 39:L22303. doi:10.1029/2012GL054245

    Google Scholar 

  • Jaupart C (1998) Gas loss from magmas through conduit walls during eruption. J Geol Soc 145:73–90

    Google Scholar 

  • Johnson JB, Lees JM (2000) Plugs and chugs—seismic and acoustic observations of outgassing explosions at Karymsky, Russia and Sangay. Ecuador J Volcanol Geoth Res 101:67–82. doi:10.1016/S0377-0273(00)00164-5

    Article  Google Scholar 

  • Johnson PA, McEvilly TV (1995) Parkfield seismicity: fluid-driven? J Geophys Res 100:12937–12950. doi:10.1029/95JB00474

    Article  Google Scholar 

  • Jousset P, Budi-Santoso A, Jolly AD, Boichu M, Surono DS, Sumarti S, Hidayati S, Thierry P (2013) Signs of magma ascent in LP and VLP seismic events and link to outgassing: an example from the 2010 explosive eruption at Merapi Volcano. Indonesia J Volcanol Geoth Res 261:171–192. doi:10.1016/j.jvolgeores.2013.03.014

    Article  Google Scholar 

  • Kaiser L (1953) Erkenntnisse und folgerungen aus der messung von geräuschen bei zugbeanspruchung von metallischen werkstoffen. Arch Eisenhüttenwesen 24:43–45

    Google Scholar 

  • Kendrick JE, Smith R, Sammonds P, Meredith PG, Dainty M, Pallister JS (2013) The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington. Bull Volcanol 75(7):1–12

    Article  Google Scholar 

  • Kennedy LA, Russell JK, Nelles E (2009) Origins of Mount St. Helens cataclasites: experimental insights. Am Mineral 94:995–1004

    Article  Google Scholar 

  • Knapp RB, Knight JE (1977) Differential thermal expansion of pore fluids: fracture propagation and microearthquake production in hot pluton environments. J Geophys Res 82(17):2515–2522

    Article  Google Scholar 

  • Kolzenburg S, Heap MJ, Lavallée RJK, Meredith PG, Dingwell DB (2012) Strength and permeability recovery of tuffisite-bearing andesite. Solid Earth 3:191–198. doi:10.5194/se-3-191-2012

    Article  Google Scholar 

  • Kranz RL, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82(30):4893–4898

    Article  Google Scholar 

  • Kumagai H, Chouet BA, Nakano M (2002) Temporal evolution of a hydrothermal system in Kusasutsu-Shirane Volcano, Japan, inferred from the complex frequencies of long-period events. J Geophys Res 107:B11–B2301. doi:10.1029/2001JB000653

    Google Scholar 

  • Lagmay AMF, de Vries BVW, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62(4–5):331–346

    Article  Google Scholar 

  • Lahr JC, Chouet BA, Stephens CD, Power JA, Page RA (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at redoubt volcano. Alaska J Volcanol Geoth Res 62:137–151. doi:10.1016/0377-0273(94)90031-0

    Article  Google Scholar 

  • Lavallée Y, Benson PM, Heap MJ, Flaws A, Hess K-U, Dingwell DB (2011) Volcanic conduit failure as a trigger to magma fragmentation. Bull Volcanol 74:11–13

    Article  Google Scholar 

  • Lavallée Y, Benson PM, Heap MJ, Hess KU, Flaws A, Schillinger B, Dingwell DB (2013) Reconstructing magma failure and the degassing network of dome-building eruptions. Geology 41(4):515–518. doi:10.1130/G33948.1

    Article  Google Scholar 

  • Lavallée Y, Heap MJ, Kueppers U, Kendrick J, Dingwell DB (2016) The fragility of Volcán de Colima—a material constraint. In: Varley N, Komorowski J-C (eds) Volcán de Colima: managing the threat. Active Volcanoes of the World. Springer, New York, ISBN 978-3-642-25910-4 (In Press)

    Google Scholar 

  • Lavrov A (2003) The Kaiser effect in rocks: principals and stress estimation techniques. Int J Rock Mech Min Sci 40:151–171

    Article  Google Scholar 

  • Lensky NG, Navon O, Lyakhovsky V (2004) Bubble growth during decompression of magma: experimental and theoretical investigation. J Volcanol Geoth Res 129:7–22. doi:10.1016/S0377-0273(03)00229-4

    Article  Google Scholar 

  • Loaiza S, Fortin J, Schubnel A, Gueguen Y, Vinciguerra S, Moreira M (2012) Mechanical behavior and localized failure modes in a porous basalt from the Azores. Geophys Res Lett 39(19)

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci 30:883–899. doi:10.1016/0148-9062(93)90041-B

    Article  Google Scholar 

  • Luhr JF (2002) Petrology and geochemistry of the 1991 and 1998–1999 lava flows from Volcán de Colima, México: implications for the end of the current eruptive cycle. J Volcanol Geoth Res 117:169–194. doi:10.1016/S0377-0273(02)00243-3

    Article  Google Scholar 

  • Melnik O, Barmin AA, Sparks RSJ (2005) Dynamics of magma flow inside volcanic conduits with bubble overpressure buildup and gas loss through permeable magma. J Volcanol Geotherm Res 143(1):53–68

    Article  Google Scholar 

  • Michaut C, Ricard Y, Bercovici D, Sparks RSJ (2013) Eruption cyclicity at silicic volcanoes potentially caused by magmatic gas waves. Nat Geosci 6(10):856–860

    Article  Google Scholar 

  • Mueller SB, Varley NR, Kueppers U, Lesage P, Reyes-Davila GA, Dingwell DB (2013) Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcan de Colima, Mexico. Solid Earth. 4/ 201–213. doi: 10.5194:se-4-201-2013.

  • Mueller S, Scheu B, Kueppers U, Spieler O, Richard D, Dingwell DB (2011) The porosity of pyroclasts as an indicator of volcanic explosivity. J Volcanol Geotherm Res 203(3):168–174

    Article  Google Scholar 

  • Nara Y, Meredith PG, Yoneda T, Kaneko K (2011) Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure. Tectonophysics 503(1):52–59

    Article  Google Scholar 

  • Neuberg J (2000) Characteristics and causes of shallow seismicity in andesite volcanoes. Philosophical Transactions of the Royal Society of London. Series A Math Phys Eng Sci 358(1770):1533–1546

    Article  Google Scholar 

  • Neuberg JW, Tuffen H, Collier L, Green D, Powell T, Dingwell D (2006) The trigger mechanism of low-frequency earthquakes on Montserrat. J Volcanol Geotherm Res 153(1):37–50

    Article  Google Scholar 

  • Newhall CG, Albano SE, Matsumoto N, Sandoval T (2001) Roles of groundwater in volcanic unrest. J Geol Soc Phil 56:69–84

    Google Scholar 

  • Nicholson EJ, Mather TA, Pyle DM, Odbert HM, Christopher T (2013) Cyclical patterns in volcanic degassing revealed by SO 2 flux timeseries analysis: an application to Soufrière Hills Volcano, Montserrat. Earth Planet Sci Lett 375:209–221

    Article  Google Scholar 

  • Nishi Y, Sherburn S, Scott SJ, Sugihara M (1996) High-frequency earthquakes at White Island volcano, New Zealand: insights into the shallow structure of a volcano hydrothermal system. J Volcanol Geoth Res 72:183–197. doi:10.1016/0377-0273(96)00005-4

    Article  Google Scholar 

  • Ougier-Simonin A, Zhu W (2013) Effects of pore fluid pressure on slip behaviors: an experimental study. Geophys Res Lett 40:2619–2624. doi:10.1002/grl.50543

    Article  Google Scholar 

  • Palo M, Ibanez JM, Cisneros M, Breton M, Del Pezzo E, Ocana E, Orozco-Rojas J, Posadas AM (2009) Analysis of the seismic wavefield properties of volcanic explosions at Volcan de Colima, Mexico: insights into the source mechanism. Geophys J Int 177:1383–1398. doi:10.1111/j.1365-246X.2009.04134.x

    Article  Google Scholar 

  • Paterson MS, Wong T-f (2005) Experimental rock deformation—the brittle field, 2nd edn. Springer, New York

    Google Scholar 

  • Petersen T, Caplan-Auerbach J, McNutt SR (2006) Sustained long period seismicity at Shishaldin Volcano, Alaska. J Volcanol Geotherm Res 151:365–381

    Article  Google Scholar 

  • Petrosino S, Cusano P, La Rocca M, Galluzzo D, Orozco-Rojas J, Bretón M, Ibañez J, Del Pezzo E (2011) Source location of long period seismicity at Volcàn de Colima. México Bull Volcanol 73:887–898

    Article  Google Scholar 

  • Plail M, Edmonds M, Humphreys M, Barclay J, Herd RA (2014) Geochemical evidence for relict degassing pathways preserved in andesite. Earth Plan Sci Let 386:21–33. doi:10.1016/j.epsl.2013.10.044

    Article  Google Scholar 

  • Power JA, Stihler SD, White RA, Moran SC (2004) Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989–2002. J Volcanol Geotherm Res 138(3):243–266

    Article  Google Scholar 

  • Reid ME, Christian SB, Brien DL (2000) Gravitational stability of three-dimensional stratovolcano edifices. J Geophys Res 105:6043–6056. doi:10.1029/1999JB900310

    Article  Google Scholar 

  • Roman DC, Moran SC, Power JA, Cashman KV (2004) Temporal and spatial variation of local stress fields before and after the 1992 eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska. Bull Seismol Soc Am 94:2366–2379

    Article  Google Scholar 

  • Rubey WW, Hubbert MK (1959) Role of fluid pressure in mechanics of overthrust faulting: II. Overthrust belt in geosynclinal area of western Wyoming in light of fluid-pressure hypothesis. Geo Soc Am Bull 70:167–206. doi:10.1130/0016-7606(1959)70[167:ROFPIM]2.0.CO;2

    Article  Google Scholar 

  • Rust AC, Cashman KV, Wallace PJ (2004) Magma degassing buffered by vapor flow through brecciated conduit margins. Geology 32(4):349–352

    Article  Google Scholar 

  • Savov IP, Luhr JF, Navarro-Ochoa C (2008) Petrology and geochemistry of lava and ash erupted from Volcán Colima, Mexico, during 1998–2005. J Volcanol Geoth Res 174:241–256. doi:10.1016/j.jvolgeores.2008.02.007

    Article  Google Scholar 

  • Shibata T, Akita F (2001) Precursory changes in well water level prior to the March, 2000 eruption of Usu Volcano, Japan. Geophys Res Lett 28(9):1799–1802. doi:10.1029/2000GL012467

    Article  Google Scholar 

  • Shiina T, Nakajima J, Matsuzawa T (2013) Seismic evidence for high pore pressures in the oceanic crust: implications for fluid‐related embrittlement. Geophys Res Lett 40(10):2006–2010

    Article  Google Scholar 

  • Shields JK, Mader HM, Pistone M, Caricchi L, Floess D, Putlitz B (2014) Strain‐induced outgassing of three‐phase magmas during simple shear. J Geophys Res Solid Earth 119(9):6936–6957. doi:10.1002/2014JB011111

    Article  Google Scholar 

  • Sigurdsson O (1982) Analysis of pressure pulses resulting from volcanic activity in the vicinity of a well, M.S. Thesis. University of Oklahoma, Norman, p 75

    Google Scholar 

  • Sisson TW, Power JA (2013) Deep-crustal seismicity in volcanic regions by fluid-enhanced wallrock embrittlement. American Geophysical Union, Fall Meeting 2013, abstract #V13B-2616.

  • Sisson TW, Bacon CR (1999) Gas-driven filter pressing in magmas. Geology 27(7):613–616

    Article  Google Scholar 

  • Stevenson JA, Varley N (2008) Fumarole monitoring with a handheld infrared camera: Volcán de Colima, Mexico, 2006–2007. J Volcanol Geotherm Res 177(4):911–924

    Article  Google Scholar 

  • Strehlow K, Gottsmann JH, Rust AC (2015) Poroelastic responses of confined aquifers to subsurface strain changes and their use for volcano monitoring. Solid Earth Discuss 7:1673–1729. doi:10.5194/sed-7-1673-2015

    Article  Google Scholar 

  • Taisne B, Juapart C (2008) Magma outgassing and intermittent lava dome growth. Geophys. Res. Lett. 35: L20310. doi: :10.1029/2008GL035432.

  • Taran Y, Gavilanes JC, Cortés A, Armienta MA (2000) Chemical precursors to the 1998–1999 eruption of Colima Volcano, Mexico. Revista mexicana de ciencias geológicas 17(2):111–124

    Google Scholar 

  • Terzaghi KV (1923) Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. [The calculation of the permeability coefficient of clay from the variation of hydrodynamic stress phenomena]. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse. Abteilung IIa 132:125–138

    Google Scholar 

  • Thomas ME, Neuberg J (2012) What makes a volcano tick—a first explanation of deep multiple seismic sources in ascending magma. Geology 40:351–354. doi:10.1130/G32868.1

    Article  Google Scholar 

  • Thomas ME, Petford N, Bromhead EN (2004) The effect of internal gas pressurization on volcanic edifice stability: evolution towards a critical state. Terra Nova 16(5):312–317

    Article  Google Scholar 

  • Varley NR, Taran Y (2003) Degassing processes of Popocatépetl and Volcán de Colima, Mexico. Geol Soc Lond, Spec Publ 213(1):263–280

    Article  Google Scholar 

  • Varley N, Arámbula-Mendoza R, Sanderson R, Stevenson J (2010) Generation of Vulcanian activity and long-period seismicity at Volcán de Colima, Mexico. J Volcanol Geoth Res 198(1–2):45–56. doi:10.1016/j.jvolgeores.2010.08.009

    Article  Google Scholar 

  • Vinciguerra S, Meredith PG, Hazzard J (2004) Experimental and modeling study of fluid pressure-driven fractures in Darley Dale sandstone. Geophys Res Lett 31:L09609. doi:10.1029/2004GL019638

    Article  Google Scholar 

  • Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique 47:1–31. doi:10.1680/geot.1997.47.1.1

    Article  Google Scholar 

  • Voight B, Sparks RJS, Miller AD, Stewart RC, Hoblitt RP, Clarke A, Ewart J, Aspinall WP, Baptie B, Calder ES, Cole P, Druitt TH, Hartford C, Herd RA, Jackson P, Lejeune AM, Lockhart AB, Loughlin SC, Luckett R, Lynch L, Norton GE, Robertson R, Watson IM, Watts R, Young SR (1999) Magma flow instability and cyclic activity at Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1138–1142. doi:10.1126/science.283.5405.1138

    Article  Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton Univ, Press, Princeton, N. J

  • Watson IM, Oppenheimer C, Voight B, Francis PW, Clarke A, Stix J, Staff MVO (2000) The relationship between degassing and ground deformation at Soufriere Hills Volcano, Montserrat. J Volcanol Geoth Res 98(1):117–126

    Article  Google Scholar 

  • Watters RJ, Zimbelman DR, Bowman SD, Crowley JK (2000) Rock mass strength assessment and significance to edifice stability, Mount Rainier and Mount Hood, Cascade Range Volcanoes. Pure Appl Geophys 157:957–976. doi:10.1007/s000240050012

    Article  Google Scholar 

  • Wong T-f, Baud P (2012) The brittle-ductile transition in porous rock: a review. J Struct Geol 44:25–53. doi:10.1016/j.jsg.2012.07.010

    Article  Google Scholar 

  • Wong T-f, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. Solid Earth 102:3009–3025. doi:10.1029/96JB03281

    Google Scholar 

  • Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruptions of silicic magmas. Nature 370:641–644. doi:10.1038/370641a0

    Article  Google Scholar 

  • Yokoo A, Iguchi M, Tameguri T, Yamamoto K (2013) Processes prior to outbursts of vulcanian eruption at Showa Crater of Sakurajima Volcano. Bull Volcanol Soc Japan 58:163–181

    Google Scholar 

  • Young NK, Gottsmann J (2015) Shallow crustal mechanics from volumetric strain data: Insights from Soufrière Hills Volcano, Montserrat. J Geophys Res: Solid Earth 120(3):1559–1571

    Article  Google Scholar 

  • Zhu W, Baud P, T-f W (2010) Micromechanics of cataclastic pore collapse in limestone. J Geophys Res Solid Earth 115:B4. doi:10.1029/2009JB006610

    Google Scholar 

  • Zhu W, Baud P, Vinciguerra S, Wong TF (2011) Micromechanics of brittle faulting and cataclastic flow in Alban Hills tuff. J Geophys Res 116:B06209. doi:10.01029/02010JB008046

Download references

Acknowledgments

We would first like to thank Sebastian Mueller and Olivier Spieler for collecting the experimental materials in 2004 (field campaign supported by the R&D Program GEOTECHNOLOGIEN, funded by the German Ministry of Education and Research (BMBF) and German Research Foundation (DFG), Grant PTJ MGS/03G584A-SUNDAARC-DEVACOM). Amy Sharp is thanked for analysis of thermal data. JF acknowledges the Initiative d’Excellence (IDEX) “Contrats doctoraux” grant and MJH acknowledges IDEX Attractivité grant (“VOLPERM”), both funded by the University of Strasbourg. This work has also benefitted from LABEX grant ANR-11-LABX-0050_G-EAU-THERMIE-PROFONDE and therefore benefits from state funding managed by the Agence National de la Recherche (ANR) as part of the “Investissements d’avenir” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie Farquharson.

Additional information

Editorial responsibility: A. Gudmundsson

Appendices

Appendix A: Effective pressure law for andesite

Any loading of a saturated porous medium is defined by the stress components σ ij and the pore fluid pressure P p . Moreover, if the poromechanical response of said medium to an applied stress coincides with that of the stress difference σ ij  − αP p δ ij , then the latter quantity is referred to as the effective stress σ ij . In particular, if the coefficient α is unity, then the quantity σ ij  − P p δ ij corresponds to Terzaghi’s formulation, often called “Terzaghi’s effective stress” or “Terzaghi’s principle” (Terzaghi 1923; Baud et al. 2015). For elastic deformation, the effective stress law can be derived from the linear theory of poroelasticity (Berryman 1992; Wang 2000) with the effective stress coefficient given by the Biot-Willis coefficient α, whereby 0 ≤ α ≤ 1 (Biot 1941; Paterson and Wong 2005). For inelastic deformation and failure, α can be determined experimentally.

In conventional triaxial deformation experiments, this simple effective stress law is defined in terms of an effective pressure, whereby P eff  = P c  − αP p ; P eff and P c being the effective and confining pressures, respectively. Simply put, in the case where α = 1, the stress regime on a sample deformed at respective confining and pore pressures of 10 and 15 MPa would be identical to that imposed with confining and pore pressures of 100 and 105 MPa, respectively (the effective pressure would be 5 MPa in both cases). In contrast, if the volumetric response of the fluid and solid constituents are unequal and α < 1, then the stress regimes in the two scenarios will differ. In essence, this means that the measured failure stress of a sample would be different in each scenario, all other parameters being equal. There exists a paucity of data on this coefficient for the failure of porous rocks, largely due to the natural variability between samples, which makes its determination often challenging and sometimes quite impossible.

Since we present triaxial experiments at different pressures in this study, it is important to verify that the effective pressure coefficient does not differ significantly from unity in porous andesites. We therefore performed a series of constant strain rate triaxial tests at the same nominal effective pressure according to Terzaghi’s principle (i.e. P eff if α = 1), but imposing different confining and pore pressures. In an attempt to minimise sample variability, we selected samples that contained the same connected porosity. The experimental conditions and differential stress at failure are given in Table 2.

Table 2 Porosity, pressure conditions, and differential stress at failure for porous A5 andesite. P p , P c , and P eff correspond respectively to the pore, confining, and effective pressures and are all given in MPa

Herein, we calculate α as the value that equalises the ratio of minimum and maximum peak stresses (σ Pa and σ Pb) and the ratio of the corresponding effective pressures (P effa and P effb):

$$ \frac{\sigma_{\mathrm{Pa}}}{\sigma_{\mathrm{Pb}}}=\frac{P_{eff\mathtt{a}}}{P_{eff\mathtt{b}}} \approx 0.73 $$
(A1)

which occurs when α ≈ 0.98, a value comparable to that determined recently by Baud et al. (2015) for Bleurswiller sandstone. However, we note that the natural variability in strength of these andesites is high: samples A5-09 and A5-11 were deformed under identical experimental conditions, yet there is a discrepancy of 18.68 MPa between their differential stresses at failure. Given the level of natural heterogeneity in these andesites (a result of their complex and variable microstructure)—and indeed, in other intrusive and extrusive igneous rocks—we highlight that our data are not sufficient to state conclusively that the effective pressure coefficient differs significantly from unity in these materials. Nevertheless, although we cannot constrain the exact value of the Biot-Willis coefficient in these andesites, this pilot study does confirm that the true value is not likely to differ significantly from unity. As such, the use of Terzhagi’s principle of effective pressure in our tests is a valid assumption.

Appendix B: Sample drainage

If the deformation of a sample proceeds at a rate faster than the response time of the pore pressure intensifier/volumometer, the experiment is considered “undrained”. In such a scenario, the tips of fast growing dilatant microcracks would not be fluid-saturated; this not only provides an underestimate of the porosity change during deformation but also influences the mechanical behaviour of the rock. Sample drainage was an important consideration in the experiments presented herein because we are interested in the mechanical response of a rock as pore pressure is increased. If our experiments were undrained, there would be a discrepancy between the pore pressure we expect in the rock, and the pore pressure within the rock. This would further complicate matters by creating a heterogeneous pore pressure distribution within the sample. In order to assess whether our samples were drained (i.e. fully saturated) during all the experiments, the setup shown in Fig. 10 was used. This experimental setup allows the increase or decrease of pore pressure using an intensifier whilst monitoring both up- and downstream pressure. When the downstream valve (8 in Figure 10) is closed, any pressure deviation measured by the downstream transducer (6 in Figure 10) must first have flowed through the sample. By servo-controlling the upstream pore fluid pressure and monitoring the downstream pressure, we can thus determine whether the sample is drained at different pressure increase rates. Pore pressure was oscillated between 10 and 20 MPa, whilst confining pressure was maintained at 40 MPa. Pressure was cycled at incrementally faster rates, from an initial value of 5.0 × 10−2 MPa s−1, to a final rate of 5.0 × 10−1 MPa s−1. If the sample were undrained, we would expect to see a delay in the response of the downstream pressure relative to the upstream pressure. However, as shown in Figure 11, no delay can be seen. This indicates that the permeability of these porous andesites is sufficiently high to preclude sample desaturation, even at significantly high rates of pore pressure increase.

Fig. 10
figure 10

Schematic of the setup used to test sample drainage. When the upstream valve is open, pore pressure within the sample can be increased or decreased by the intensifier (10). If the downstream valve is open, then the pore pressure circuit is fully connected. However, when (9) is open and (8) closed, the pressure response measured at (6) depends on whether or not the sample is fully saturated

Fig. 11
figure 11

Mechanical data from a triaxial experiment designed to examine sample drainage in porous andesitic rock (sample C8). a Graph of pore pressure against time showing the monitored upstream (red dotted curve) pressure as a function of changing downstream (black dotted curve) pressure. b Graph of pore pressure rate against time showing the (absolute) rate of pore pressure change during the experiment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farquharson, J., Heap, M.J., Baud, P. et al. Pore pressure embrittlement in a volcanic edifice. Bull Volcanol 78, 6 (2016). https://doi.org/10.1007/s00445-015-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0997-9

Keywords

Navigation