A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards

Abstract

The 1963 AD eruption of Agung volcano was one of the most significant twentieth century eruptions in Indonesia, both in terms of its explosivity (volcanic explosivity index (VEI) of 4+) and its short-term climatic impact as a result of around 6.5 Mt SO2 emitted during the eruption. Because Agung has a significant potential to generate more sulphur-rich explosive eruptions in the future and in the wake of reported geophysical unrest between 2007 and 2011, we investigated the Late Holocene tephrostratigraphic record of this volcano using stratigraphic logging, and geochemical and geochronological analyses. We show that Agung has an average eruptive frequency of one VEI ≥2–3 eruptions per century. The Late Holocene eruptive record is dominated by basaltic andesitic eruptions generating tephra fall and pyroclastic density currents. About 25 % of eruptions are of similar or larger magnitude than the 1963 AD event, and this includes the previous eruption of 1843 AD (estimated VEI 5, contrary to previous estimations of VEI 2). The latter represents one of the chemically most evolved products (andesite) erupted at Agung. In the Late Holocene, periods of more intense explosive activity alternated with periods of background eruptive rates similar to those at other subduction zone volcanoes. All eruptive products at Agung show a texturally complex mineral assemblage, dominated by plagioclase, clinopyroxene, orthopyroxene and olivine, suggesting recurring open-system processes of magmatic differentiation. We propose that erupted magmas are the result of repeated intrusions of basaltic magmas into basaltic andesitic to andesitic reservoirs producing a hybrid of bulk basaltic andesitic composition with limited compositional variations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350

    Article  Google Scholar 

  2. Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67

    Article  Google Scholar 

  3. Angell JK, Korshover J (1985) Surface temperature changes following the six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951

    Article  Google Scholar 

  4. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360

    Google Scholar 

  5. Canty T, Mascioli NR, Smarte MD, Salawitch RJ (2013) An empirical model of global climate—part 1: a critical evaluation of volcanic cooling. Atmos Chem Phys 13:3997–4031

    Article  Google Scholar 

  6. Carn SA (2000) The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J Volcanol Geotherm Res 95:81–108

    Article  Google Scholar 

  7. Carr (2012) Igpet for Windows. http://home.comcast.net/~carrvolcano/site/?/page/Igpet_for_Windows_and_M

  8. Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys Res Lett 39, L21311

    Google Scholar 

  9. Chaussard E, Amelung F, Aoki Y (2013) Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J Geophys Res Solid Earth 118:3957–3969

    Article  Google Scholar 

  10. Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235

    Article  Google Scholar 

  11. Doust R (2003) Volcanic hazard assessment Gunung Agung, Bali, Indonesia. Unpublished MSc Thesis, Pennsylvania State University

  12. Foden JD (1983) The petrology of the Calcalkaline Lavas of Rindjani Volcano, East Sunda Arc: a model for island arc petrogenesis. J Petrol 24:98–130

    Article  Google Scholar 

  13. Gertisser R, Keller J (2003a) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda arc magma genesis. J Petrol 44:457–489

    Article  Google Scholar 

  14. Gertisser R, Keller J (2003b) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. J Volcanol Geotherm Res 123:1–23

    Article  Google Scholar 

  15. Gertisser R, Charbonnier S, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74:1213–1233

    Article  Google Scholar 

  16. Girona T, Costa F, Newhall C, Taisne B (2014) On depressurization of volcanic magma reservoirs by passive degassing. J Geophys Res Solid Earth 119:8667–8687

    Article  Google Scholar 

  17. Hägerdal H (2006) Candrasangkala: the Balinese art of dating events. University of Växjö, Sweden, 212 pp

    Google Scholar 

  18. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org

  19. Kamata H, Kobayashi T (1997) The eruptive rate and history of Kuju volcano in Japan during the past 15,000 years. J Volcanol Geotherm Res 76:163–171

    Article  Google Scholar 

  20. Lavigne F, Degeai J-P, Komorowski J-C, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Surono, Pratomo I, Wassmer P, Hajdas I, Hadmoko DS, de Belizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc Natl Acad Sci 110:16742–16747

    Article  Google Scholar 

  21. Luhr JF, Carmichael ISE (1982) The Colima volcanic complex, Mexico:III. Contrib Mineral Petrol 80:262–275

    Article  Google Scholar 

  22. Miyabuchi Y (2009) A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan. Sediment Geol 220:169–189

    Article  Google Scholar 

  23. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  24. Nasution A, Haerani N, Mulyadi D, Hendrasto M (2004) Geological map of Agung volcano, Bali. Directorate of Volcanology and Geological Hazard Mitigation, Indonesia

    Google Scholar 

  25. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87-C2:1231–1238

    Article  Google Scholar 

  26. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50

    Article  Google Scholar 

  27. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Article  Google Scholar 

  28. Piip BI, Suyehiro S, Tonani F (1963) Report of the UNESCO volcanological mission to study the Agung volcano. UNESCO, 65 pp

  29. Preece K, Barclay J, Gertisser R, Herd RA (2013) Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: implications for sub-surface processes. J Volcanol Geotherm Res 261:98–120

    Article  Google Scholar 

  30. Purbo-Hadiwidjojo HM (1971) Geological map Bali, scale 1:250.000, Geological Survey of Indonesia

  31. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  32. Pyle DM (2000) Sizes of volcanic eruptions. In: Houghton B, Rymer H, Stix J, McNutt SR, Sigurdsson H (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269

    Google Scholar 

  33. Rampino MR, Self S (1982) Historic eruptions of Tambora (1815) Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quat Res 18:127–143

    Article  Google Scholar 

  34. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  35. Reubi O, Nicholls IA (2004a) Variability in eruptive dynamics associated with caldera collapse: an example from two successive eruptions at Batur volcanic field, Bali, Indonesia. Bull Volcanol 66:134–148

    Article  Google Scholar 

  36. Reubi O, Nicholls IA (2004b) Magmatic evolution at Batur volcanic field, Bali, Indonesia: petrological evidence for polybaric fractional crystallization and implications for caldera-forming eruptions. J Volcanol Geotherm Res 138:345–369

    Article  Google Scholar 

  37. Reubi O, Nicholls IA (2005) Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur Volcanic Field, Bali, Indonesia. J Petrol 46:1367–1391

    Article  Google Scholar 

  38. Ryu S, Kitagawa H, Nakamura E, Itaya T, Watanabe K (2013) K–Ar analyses of the post-caldera lavas of Bratan volcano in Bali Island, Indonesia—Ar isotope mass fractionation to light isotope enrichment. J Volcanol Geotherm Res 264:107–116

    Article  Google Scholar 

  39. Self S, King AJ (1996) Petrology and sulphur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bull Volcanol 58:263–285

    Article  Google Scholar 

  40. Self S, Rampino M (2012) The 1963–1964 eruption of Agung volcano (Bali, Indonesia). Bull Volcanol 74:1521–1536

    Article  Google Scholar 

  41. Self S, Rampino MR, Barbera JJ (1981) The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. J Volcanol Geotherm Res 11:41–60

    Article  Google Scholar 

  42. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, Berkeley

    Google Scholar 

  43. Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nov. 12:14–20

  44. Sutawidjaja I (2009) Ignimbrite analyses of Batur Caldera, Bali, based on 14C dating. J Geol Indones 4:189–202

    Google Scholar 

  45. Tanguy J-C, Ribière C, Scarth A, Tjeptjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144

    Article  Google Scholar 

  46. Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IEM (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34

    Article  Google Scholar 

  47. Van Daele M, Moernaut J, Silversmit G, Schmidt S, Fontijn K, Heirman K, Vandoorne W, De Clercq M, Van Acker J, Wolff C, Pino M, Urrutia R, Roberts SJ, Vincze L, De Batist M (2014) The 600 yr eruptive history of Villarrica Volcano (Chile) revealed by annually laminated lake sediments. Geol Soc Am Bull 126:481–498

    Article  Google Scholar 

  48. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138

    Article  Google Scholar 

  49. Wigley TML, Ammann CM, Santer BD, Raper SCB (2005) Effect of climate sensitivity on the response to volcanic forcing. J Geophys Res Atmos 110, D09107

    Article  Google Scholar 

  50. Zen MT, Hadikusumo D (1964) Preliminary report on the 1963 eruption of Mt. Agung in Bali (Indonesia). Bull Volcanol 27:269–299

    Article  Google Scholar 

  51. Zollinger H (1845) Een uitstapje naar het eiland Bali. Tijdschrift voor Nederlands Indie, jaargang 7, IV, p 43 (in Dutch)

Download references

Acknowledgments

We thank CVGHM for logistic support during fieldwork and RISTEK for research permits. We are grateful to Anwar Sidik, I Nengah Wardhana and Dewa Mertheyash from the Rendang Volcano Observatory for their hospitality and help in the field. Ryuta Furukawa is thanked for introductions to key outcrops. Tanya Furman is kindly acknowledged for sharing the work by Doust (2003). Reviews by John Pallister and Mary-Ann del Marmol, and editorial handling by James Gardner were greatly appreciated. Fieldwork and laboratory analyses were funded by the Earth Observatory of Singapore. Data interpretation and writing was performed at Oxford (NERC grant NE/I013210/1) and Ghent universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karen Fontijn.

Additional information

Editorial responsibility: J.E. Gardner

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(XLSX 42 kb)

Supplementary Table 2

(XLSX 288 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fontijn, K., Costa, F., Sutawidjaja, I. et al. A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards. Bull Volcanol 77, 59 (2015). https://doi.org/10.1007/s00445-015-0943-x

Download citation

Keywords

  • Agung
  • Tephrostratigraphy
  • Eruptive history
  • Basaltic andesite
  • Magma mixing
  • Magma mingling