A 5000-year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards

  • Karen Fontijn
  • Fidel Costa
  • Igan Sutawidjaja
  • Christopher G. Newhall
  • Jason S. Herrin
Research Article

Abstract

The 1963 AD eruption of Agung volcano was one of the most significant twentieth century eruptions in Indonesia, both in terms of its explosivity (volcanic explosivity index (VEI) of 4+) and its short-term climatic impact as a result of around 6.5 Mt SO2 emitted during the eruption. Because Agung has a significant potential to generate more sulphur-rich explosive eruptions in the future and in the wake of reported geophysical unrest between 2007 and 2011, we investigated the Late Holocene tephrostratigraphic record of this volcano using stratigraphic logging, and geochemical and geochronological analyses. We show that Agung has an average eruptive frequency of one VEI ≥2–3 eruptions per century. The Late Holocene eruptive record is dominated by basaltic andesitic eruptions generating tephra fall and pyroclastic density currents. About 25 % of eruptions are of similar or larger magnitude than the 1963 AD event, and this includes the previous eruption of 1843 AD (estimated VEI 5, contrary to previous estimations of VEI 2). The latter represents one of the chemically most evolved products (andesite) erupted at Agung. In the Late Holocene, periods of more intense explosive activity alternated with periods of background eruptive rates similar to those at other subduction zone volcanoes. All eruptive products at Agung show a texturally complex mineral assemblage, dominated by plagioclase, clinopyroxene, orthopyroxene and olivine, suggesting recurring open-system processes of magmatic differentiation. We propose that erupted magmas are the result of repeated intrusions of basaltic magmas into basaltic andesitic to andesitic reservoirs producing a hybrid of bulk basaltic andesitic composition with limited compositional variations.

Keywords

Agung Tephrostratigraphy Eruptive history Basaltic andesite Magma mixing Magma mingling 

Notes

Acknowledgments

We thank CVGHM for logistic support during fieldwork and RISTEK for research permits. We are grateful to Anwar Sidik, I Nengah Wardhana and Dewa Mertheyash from the Rendang Volcano Observatory for their hospitality and help in the field. Ryuta Furukawa is thanked for introductions to key outcrops. Tanya Furman is kindly acknowledged for sharing the work by Doust (2003). Reviews by John Pallister and Mary-Ann del Marmol, and editorial handling by James Gardner were greatly appreciated. Fieldwork and laboratory analyses were funded by the Earth Observatory of Singapore. Data interpretation and writing was performed at Oxford (NERC grant NE/I013210/1) and Ghent universities.

Supplementary material

445_2015_943_MOESM1_ESM.xlsx (42 kb)
Supplementary Table 1 (XLSX 42 kb)
445_2015_943_MOESM2_ESM.xlsx (288 kb)
Supplementary Table 2 (XLSX 288 kb)

References

  1. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe–Mg–Mn–Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350CrossRefGoogle Scholar
  2. Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67CrossRefGoogle Scholar
  3. Angell JK, Korshover J (1985) Surface temperature changes following the six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951CrossRefGoogle Scholar
  4. Bronk Ramsey C (2009) Bayesian analysis of radiocarbon dates. Radiocarbon 51:337–360Google Scholar
  5. Canty T, Mascioli NR, Smarte MD, Salawitch RJ (2013) An empirical model of global climate—part 1: a critical evaluation of volcanic cooling. Atmos Chem Phys 13:3997–4031CrossRefGoogle Scholar
  6. Carn SA (2000) The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards. J Volcanol Geotherm Res 95:81–108CrossRefGoogle Scholar
  7. Chaussard E, Amelung F (2012) Precursory inflation of shallow magma reservoirs at west Sunda volcanoes detected by InSAR. Geophys Res Lett 39, L21311Google Scholar
  8. Chaussard E, Amelung F, Aoki Y (2013) Characterization of open and closed volcanic systems in Indonesia and Mexico using InSAR time series. J Geophys Res Solid Earth 118:3957–3969CrossRefGoogle Scholar
  9. Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209–235CrossRefGoogle Scholar
  10. Doust R (2003) Volcanic hazard assessment Gunung Agung, Bali, Indonesia. Unpublished MSc Thesis, Pennsylvania State UniversityGoogle Scholar
  11. Foden JD (1983) The petrology of the Calcalkaline Lavas of Rindjani Volcano, East Sunda Arc: a model for island arc petrogenesis. J Petrol 24:98–130CrossRefGoogle Scholar
  12. Gertisser R, Keller J (2003a) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda arc magma genesis. J Petrol 44:457–489CrossRefGoogle Scholar
  13. Gertisser R, Keller J (2003b) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2000 years of explosive activity. J Volcanol Geotherm Res 123:1–23CrossRefGoogle Scholar
  14. Gertisser R, Charbonnier S, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74:1213–1233CrossRefGoogle Scholar
  15. Girona T, Costa F, Newhall C, Taisne B (2014) On depressurization of volcanic magma reservoirs by passive degassing. J Geophys Res Solid Earth 119:8667–8687CrossRefGoogle Scholar
  16. Hägerdal H (2006) Candrasangkala: the Balinese art of dating events. University of Växjö, Sweden, 212 pp Google Scholar
  17. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org
  18. Kamata H, Kobayashi T (1997) The eruptive rate and history of Kuju volcano in Japan during the past 15,000 years. J Volcanol Geotherm Res 76:163–171CrossRefGoogle Scholar
  19. Lavigne F, Degeai J-P, Komorowski J-C, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Surono, Pratomo I, Wassmer P, Hajdas I, Hadmoko DS, de Belizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc Natl Acad Sci 110:16742–16747CrossRefGoogle Scholar
  20. Luhr JF, Carmichael ISE (1982) The Colima volcanic complex, Mexico:III. Contrib Mineral Petrol 80:262–275CrossRefGoogle Scholar
  21. Miyabuchi Y (2009) A 90,000-year tephrostratigraphic framework of Aso Volcano, Japan. Sediment Geol 220:169–189CrossRefGoogle Scholar
  22. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133Google Scholar
  23. Nasution A, Haerani N, Mulyadi D, Hendrasto M (2004) Geological map of Agung volcano, Bali. Directorate of Volcanology and Geological Hazard Mitigation, IndonesiaGoogle Scholar
  24. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87-C2:1231–1238CrossRefGoogle Scholar
  25. Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50CrossRefGoogle Scholar
  26. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  27. Piip BI, Suyehiro S, Tonani F (1963) Report of the UNESCO volcanological mission to study the Agung volcano. UNESCO, 65 ppGoogle Scholar
  28. Preece K, Barclay J, Gertisser R, Herd RA (2013) Textural and micro-petrological variations in the eruptive products of the 2006 dome-forming eruption of Merapi volcano, Indonesia: implications for sub-surface processes. J Volcanol Geotherm Res 261:98–120CrossRefGoogle Scholar
  29. Purbo-Hadiwidjojo HM (1971) Geological map Bali, scale 1:250.000, Geological Survey of IndonesiaGoogle Scholar
  30. Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120CrossRefGoogle Scholar
  31. Pyle DM (2000) Sizes of volcanic eruptions. In: Houghton B, Rymer H, Stix J, McNutt SR, Sigurdsson H (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269Google Scholar
  32. Rampino MR, Self S (1982) Historic eruptions of Tambora (1815) Krakatau (1883), and Agung (1963), their stratospheric aerosols, and climatic impact. Quat Res 18:127–143CrossRefGoogle Scholar
  33. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887CrossRefGoogle Scholar
  34. Reubi O, Nicholls IA (2004a) Variability in eruptive dynamics associated with caldera collapse: an example from two successive eruptions at Batur volcanic field, Bali, Indonesia. Bull Volcanol 66:134–148CrossRefGoogle Scholar
  35. Reubi O, Nicholls IA (2004b) Magmatic evolution at Batur volcanic field, Bali, Indonesia: petrological evidence for polybaric fractional crystallization and implications for caldera-forming eruptions. J Volcanol Geotherm Res 138:345–369CrossRefGoogle Scholar
  36. Reubi O, Nicholls IA (2005) Structure and dynamics of a silicic magmatic system associated with caldera-forming eruptions at Batur Volcanic Field, Bali, Indonesia. J Petrol 46:1367–1391CrossRefGoogle Scholar
  37. Ryu S, Kitagawa H, Nakamura E, Itaya T, Watanabe K (2013) K–Ar analyses of the post-caldera lavas of Bratan volcano in Bali Island, Indonesia—Ar isotope mass fractionation to light isotope enrichment. J Volcanol Geotherm Res 264:107–116CrossRefGoogle Scholar
  38. Self S, King AJ (1996) Petrology and sulphur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bull Volcanol 58:263–285CrossRefGoogle Scholar
  39. Self S, Rampino M (2012) The 1963–1964 eruption of Agung volcano (Bali, Indonesia). Bull Volcanol 74:1521–1536CrossRefGoogle Scholar
  40. Self S, Rampino MR, Barbera JJ (1981) The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. J Volcanol Geotherm Res 11:41–60CrossRefGoogle Scholar
  41. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, BerkeleyGoogle Scholar
  42. Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nov. 12:14–20Google Scholar
  43. Sutawidjaja I (2009) Ignimbrite analyses of Batur Caldera, Bali, based on 14C dating. J Geol Indones 4:189–202Google Scholar
  44. Tanguy J-C, Ribière C, Scarth A, Tjeptjep WS (1998) Victims from volcanic eruptions: a revised database. Bull Volcanol 60:137–144CrossRefGoogle Scholar
  45. Turner MB, Cronin SJ, Stewart RB, Bebbington M, Smith IEM (2008) Using titanomagnetite textures to elucidate volcanic eruption histories. Geology 36:31–34CrossRefGoogle Scholar
  46. Van Daele M, Moernaut J, Silversmit G, Schmidt S, Fontijn K, Heirman K, Vandoorne W, De Clercq M, Van Acker J, Wolff C, Pino M, Urrutia R, Roberts SJ, Vincze L, De Batist M (2014) The 600 yr eruptive history of Villarrica Volcano (Chile) revealed by annually laminated lake sediments. Geol Soc Am Bull 126:481–498CrossRefGoogle Scholar
  47. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138CrossRefGoogle Scholar
  48. Wigley TML, Ammann CM, Santer BD, Raper SCB (2005) Effect of climate sensitivity on the response to volcanic forcing. J Geophys Res Atmos 110, D09107CrossRefGoogle Scholar
  49. Zen MT, Hadikusumo D (1964) Preliminary report on the 1963 eruption of Mt. Agung in Bali (Indonesia). Bull Volcanol 27:269–299CrossRefGoogle Scholar
  50. Zollinger H (1845) Een uitstapje naar het eiland Bali. Tijdschrift voor Nederlands Indie, jaargang 7, IV, p 43 (in Dutch)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Earth Observatory of SingaporeNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Earth SciencesUniversity of OxfordOxfordUK
  3. 3.Department of Geology and Soil ScienceGhent UniversityGhentBelgium
  4. 4.Centre for Volcanology and Geological Hazard Mitigation, Geological AgencyBandungIndonesia
  5. 5.Mirisbiris Garden and Nature CenterSto DomingoPhilippines
  6. 6.Facility for Analysis Characterisation Testing Simulation, School of Materials, Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations