Advertisement

Bulletin of Volcanology

, 77:12 | Cite as

Eruptive history of a low-frequency and low-output rate Pleistocene volcano, Ciomadul, South Harghita Mts., Romania

  • Alexandru Szakács
  • Ioan Seghedi
  • Zoltán Pécskay
  • Viorel Mirea
Research Article

Abstract

Based on a new set of K–Ar age data and detailed field observations, the eruptive history of the youngest volcano in the whole Carpathian-Pannonian region was reconstructed. Ciomadul volcano is a dacitic dome complex located at the southeastern end of the Călimani-Gurghiu-Harghita Neogene volcanic range in the East Carpathians. It consists of a central group of extrusive domes (the Ciomadul Mare and Haramul Mare dome clusters and the Köves Ponk dome) surrounded by a number of isolated peripheral domes, some of them strongly eroded (Bálványos, Puturosul), and others topographically well preserved (Haramul Mic, Dealul Mare). One of the domes (Dealul Cetăţii) still preserves part of its original breccia envelope. A large number of bread-crust bombs found mostly along the southern slopes of the volcano suggest that the dome-building activity at Ciomadul was punctuated by short Vulcanian-type explosive events. Two late-stage explosive events that ended the volcanic activity of Ciomadul left behind two topographically well-preserved craters disrupting the central group of domes: the larger-diameter, shallower, and older Mohoş phreatomagmatic crater and the smaller, deeper and younger Sf. Ana (sub)Plinian crater. Phreatomagmatic products of the Mohoş center, including accretionary lapilli-bearing base-surge deposits and poorly sorted airfall deposits with impact sags, are known close to the eastern crater rim. A key section studied in detail south of Băile Tuşnad shows the temporal succession of eruptive episodes related to the Sf. Ana (sub)Plinian event, as well as relationships with the older dome-building stages. The age of this last eruptive event is loosely constrained by radiocarbon dating of charcoal pieces and paleosoil organic matter at ca. 27–35 ka. The age of the Mohoş eruption is not constrained, but we suggest that it is closely related to the Sf. Ana eruption. The whole volcanic history of Ciomadul spans over ca. 1 Myr, starting with the building up of peripheral domes and then concentrating in its central part. Ciomadul appears as a small-volume (ca. 8.74 km3) and very low-frequency and low-output rate volcano (ca. 9 km3/Myr) at the terminus of a gradually diminishing and extinguishing volcanic range. A number of geodynamically active features strongly suggest that the magma plumbing system beneath Ciomadul is not completely frozen, so future activity cannot be ruled out.

Keywords

Pleistocene volcanism East Carpathians Ciomadul Dacite dome complex Phreatomagmatic craters Volcanic evolution Radiometric ages 

Notes

Acknowledgments

This work was supported by a grant of the Ministry of National Education, CNCS—UEFISCDI, project number PN-II-ID-PCE-2012-4-0137. Field sampling and analytical work of K/Ar dating was supported by, and performed within the framework of bilateral cooperation agreement between the Romanian Academy and the Hungarian Academy of Science. The thoughtful comments and suggestions of improvement from reviewers Daisuke Miura, Andrew Calvert, and Paul Wallace are highly appreciated. We thank Norman Snelling for revision of the English. Răzvan-Gabriel Popa is thanked for his help in a previous version of Fig. 2.

References

  1. Balogh K (1985) K/Ar dating of Neogene volcanic activity in Hungary: experimental technique, experiences and methods of chronologic studies. ATOMKI Rep. D/1. p. 277–288Google Scholar
  2. Bányai J (1917) The land of Kézdivásárhely, Háromszék county (in Hungarian) Kézdivásárhely vidéke Háromszék vármegyében. Földtani Közlöny XLVII, 1–20, Budapest.Google Scholar
  3. Bányai J (1964) The age of the euption of the Szent Anna lake twin craters (in Hungarian) A Szent Anna-tavi ikerkráter erupciójának kora. Földrajzi Értesítő, XIII, 1, 57–66, BudapestGoogle Scholar
  4. Buczkó K, Magyari E (2007) The holocene diatom flora of lake Saint Anna (eastern Carpathians, Europe)—archiv für hydrobiologie. Algol Stud 124:1–28CrossRefGoogle Scholar
  5. Buczkó K, Wojtal A (2007) A new Kobayasiella species (Bacillariophyceae) from Lake Saint Anna’s sub-recent deposits in Eastern Carpathian Mountains, Europe. Nova Hedwigia 84:155–166CrossRefGoogle Scholar
  6. Cassignol C, Gillot PY (1982) Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, pp 159–179Google Scholar
  7. Casta L (1980) Les formations quaternaires de la Dépression de Braşov (Roumanie). PhD Thesis, Université de Aix-Marseille II, 256ppGoogle Scholar
  8. Cholnoky J (1922) Some features of the geographic image of the Transylvanian basin. III. Hargita. (in Hungarian) Földrajzi Közlemények, 50, 2, 107–122Google Scholar
  9. Clarke AB, Stephens S, Teasdale R, Sparks RSJ, Diller K (2007) Petrologic constraints on the decompression history of magma prior to vulcanian explosions at the Soufriere Hills volcano, Montserrat. J Volcanol Geotherm Res 161:261–274CrossRefGoogle Scholar
  10. Crosweller HS, Baneet A, Brown SK, Cottrell E, Deligne NI, Ortiz Guerrero N, Hobbs L, Kiyosugi K, Laughlin C, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4. doi: 10.1186/2191-5040-1-4 CrossRefGoogle Scholar
  11. Fink JH, Anderson SW (2000) Lava domes and culees. In H. Sigurdsson et al., eds. Encyclopedia of volcanoes. Academic Press, Elsevier, 307–319Google Scholar
  12. Gillot P-Y (1984) Datation par la méthode du potassium-argon des roches volcaniques récentes (pleistocènes et holocènes). Contributions à l’étude chronostratigraphique et magmatique des provinces volcaniques de Campanie, des Iles Eoliennes, de Pantelleria (Italie du Sud) et de la Réunion (Océan Indien). Thèse, Paris XI-Orsay, 225 ppGoogle Scholar
  13. Harangi SZ, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–90Google Scholar
  14. Harangi S, Molnár M, Vinkler AP, Kiss B, Tull AJT, Leonard AG (2010) Radiocarbon dating of the last volcanic eruptions of Ciomadul volcano, Southeast Carpathians, Eastern-central Europe. Radiocarbon 52(2–3):1498–1507Google Scholar
  15. Juvigné E, Gewelt M, Gilot E, Hurtgen C, Seghedi I, Szakács A, Gábris Gy, Hadnagy Á, Horváth E (1994) Une eruption vieille d’environ 10,700 ans (14C) dans les Carpates Orientales (Roumanie). C.R. Acad. Sci. Paris, 318, II, 1233–1238, ParisGoogle Scholar
  16. Karátson D (2007) From Börzsöny to Hargita. Volcanology, morphological evolution, paleogeography. (in Hungarian) Typotex, Budapest, pp. 463Google Scholar
  17. Karátson D, Timár G (2005) Comparative volumetric calculations of two segments of the Neogene/Quaternary volcanic chain using SRTM elevation data: implications for erosion and magma output rates. Z Geomorphol Suppl 140:19–35Google Scholar
  18. Karátson D, Telbisz T, Harangi S, Magyari E, Dunkl I, Kiss B, Jánosi C, Veres D, Braun M, Fodor E, Biró T, Kósik S, von Eynatten H, Lin D (2013) Morphometrical and geochronological constraints on the youngest eruptive activity in East-Central Europe at the Ciomadul (Csomád) lava dome complex, East Carpathians. J Volcanol Geotherm Res 255:43–56CrossRefGoogle Scholar
  19. Krummenacher D (1970) Isotopic composition of argon in modern surface volcanic rocks. Earth Planet Sci Lett 8:109–117CrossRefGoogle Scholar
  20. Lexa J, Seghedi I, Németh K, Szakács A, Konecný V, Pécskay Z, Fülöp A, Kovacs M (2010) Neogene-quaternary volcanic forms in the Carpathian-Pannonian region: a review. Central European Journal of Geosciences 2, “New advances of understanding physical volcanology processes in the Carpathian-Balkan Region from a global perspective”, 207–270, DOI: 10.2478/v10085-010-0025-4
  21. Lippolt HJ, Mertz DF, Huck K-H (1986) The genesis of the Clara and Friedrich-Christian vein deposits/Central Schwarzwald (FRG): evidence from Rb-Sr, 87Sr/86Sr, K–Ar and 40Ar/39Ar investigations. Terra Cognita 6:228Google Scholar
  22. Ludwig KR (2008) Isoplot 3.37. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No. 4Google Scholar
  23. Luhr JL (2002) Petrology and geochemistry of the 1991 and 1998–1999 lava flows from Volcan de Colima, Mexico: implications for the end of the current eruptive cycle. J Volcanol Geotherm Res 117:169–194CrossRefGoogle Scholar
  24. Magyari E, Buczkó K, Jakab G, Braun M, Szántó Z, Molnár M, Pál Z, Karátson D (2006) Holocene palaeohydrology and environmental history in the South Harghita Mountains, Romania. Földtani Közlöny 136, 2, 249–284, BudapestGoogle Scholar
  25. Magyari E, Buczkó K, Jakab G, Braun M, Pál Z, Karátson DM, Pap I (2009) Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes. Hydrobiologia 631:29–63. doi: 10.1007/s10750-009-9801-1 CrossRefGoogle Scholar
  26. Mason P, Downes H, Thirlwall MF, Seghedi I, Szakács A, Lowry D, Mattey D (1996) Crustal assimilation as a major petrogenetic process in the East Carpathian Neogene and Quaternary continental margin arc. Rom J Petrol 37:927–959CrossRefGoogle Scholar
  27. Mason PRD, Seghedi I, Szakács A, Downes H (1998) Magmatic constraints on geodynamic models of subduction in the Eastern Carpathians, Romania. Tectonophysics 297:157–176CrossRefGoogle Scholar
  28. Maţenco L, Bertotti G (2000) Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics 316:255–286CrossRefGoogle Scholar
  29. Maţenco L, Bertotti G, Leever K, Cloetingh S, Schmid SM, Tărăpoancă M, Dinu C (2007) Large-scale deformation in a locked collisional boundary: interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 26: Art. No. TC4011. DOI:  10.1029/2006TC001951
  30. Moriya I, Okuno M, Nakamura T, Szakács A, Seghedi I (1995) Last eruption and its 14C age of Ciomadul volcano, Romania (in Japanese with English Abstract). Summaries of Researches Using AMS at Nagoya University, VI, 82–91Google Scholar
  31. Moriya I, Okuno M, Nakamura T, Ono K, Szakács A, Seghedi I (1996) Radicarbon ages of charcoal fragments from the pumice flow deposit of the last eruption of Ciomadul volcano, Romania (in Japanese with English Abstract). Summaries of Researches Using AMS at Nagoya University, VII, 252–255Google Scholar
  32. Morrissey M, Zimanowski B, Wohletz K, Büttner R (2000) Phreatomagmatic fragmentation. Encyclopedia of volcanoes. H. Sigurdsson, B. F. Houghton, S. R. McNutt, H. Rymer and J. Stix. San Diego, USA, Academic Press, 431–445Google Scholar
  33. Odin GS, Adams CJ, Armstrong RL, Bagdasaryan GP, Baksi AK, Balogh K, Barnes IL, Boelrijk NALM, Bonadonna FP, Bonhomme MG, Cassignol C, Chanin L, Gillot PY, Gledhill A, Govindaraju K, Harakal R, Harre W, Hebeda EH, Hunziker JC, Ingamells CO, Kawashita K, Kiss E, Kreutzer H, Long LE, McDougall I, McDowell F, Mehnert H, Montigny R, Pasteels P, Radicati F, Rex DC, Rundle CC, Savelli C, Sonet J, Welin E, Zimmermann JL, Rundle CC, Savelli C, Sonet J, Welin E, Zimmermann JL (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, pp 123–149Google Scholar
  34. Panaiotu C, Pécskay Z, Hambach U, Seghedi I, Panaiotu C E, Itaya T.,  Orleanu M, Szakács A (2004) Short-lived Quaternary volcanism in the Persani Mountains (Romania) revealed by combined K-Ar and paleomagnetic data.  Geol Carpath 57(4):333–339Google Scholar
  35. Pécskay Z, Szakács S, Seghedi I, Karátson D (1992) New data on the geochronological interpretation of Cucu volcano and its environs (South Harghita, Romania). (In Hungarian) Földt. Közl. 122/2-4, 265–286Google Scholar
  36. Pécskay Z, Lexa J, Szakács A, Balogh K, Seghedi I, Konečný V, Kovács M, Márton E, Kaličiak M, Széky-Fux V, Póka T, Gyarmati P, Edelstein O, Roşu E, Žec B (1995a) Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian Region. Acta Vulcanol 7:15–28Google Scholar
  37. Pécskay Z, Edelstein O, Seghedi I, Szakács A, Kovacs M, Crihan M, Bernad A (1995b) K–Ar datings of the Neogene-Quaternary calc-alkaline volcanic rocks in Romania. In: Downes, H. & Vaselli, O. (eds) Neogene and related volcanism in the Carpatho-Pannonian Region. Acta Vulcanologica 7:53–63Google Scholar
  38. Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene-Quaternary magmatism in the Carpathian arc and Intra-Carpathian area: a review. Geol Carpath 57:511–530Google Scholar
  39. Peltz S, Vajdea E, Balogh K, Pécskay Z (1987) Contributions to the chronological study of the volcanic processes in the Calimani and Harghita Mountains (East Carpathians, Romania). D. S. Inst. Geol. Geofiz., 72–73, 1, 323–338, BucureştiGoogle Scholar
  40. Popa M, Radulian M, Szakács A, Seghedi I, Zaharia B (2012) New seismic and tomography data in the southern part of the Harghita Mountains (Romania, Southeastern Carpathians): connection with recent volcanic activity. Pure Appl Geophys 169, 9, 1557–1573. doi: 10.1007/s00024-011-0428-6 2010 CrossRefGoogle Scholar
  41. Sano Y, Nishio Y, Gamo T, Nagao K (1998) Helium and carbon isotope systematics at Ontake volcano, Japan. J Geophys Res 103(B10):23863–23873CrossRefGoogle Scholar
  42. Scott J (2013) Origin and evolution of the Santiaguito lava dome complex, Guatemala. PhD thesis, Department of Earth Sciences, University of Oxford. 400 ppGoogle Scholar
  43. Scott WE, Sherrod DR, Gardner CA (2008) Overview of the 2004 to 2006, and continuing, eruption of Mount Sat. Helens, Washington. USGS Prof Pap 1750:3–26Google Scholar
  44. Seghedi I, Grabari G, Ianc R, Tănăsescu A. Vâjdea E (1986) Rb, Sr, Zr, Th, U, K distribution in the Neogene Volcanics of the South Harghita Mountains. D.S.Inst.Geol.Geofiz.,70-71/1, 453–473, BucharestGoogle Scholar
  45. Seghedi I, Szakács A, Udrescu C, Stoian M. Grabari G (1987) Trace element geochemistry of the South Harghita volcanics (East Carpathians). Calc-alkaline and shoshonitic association. D. S. Inst. Geol. Geofiz. 72-73/1, 381–397Google Scholar
  46. Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pécskay Z, Márton E, Panaiotu C (2004) Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis. Lithos 72:117–146CrossRefGoogle Scholar
  47. Seghedi I, Maţenco L, Downes H, Mason PRD, Szakács A, Pécskay Z (2011) Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region. Tectonophysics 502:146–157. doi: 10.1016/j.tecto.2009.12.003 CrossRefGoogle Scholar
  48. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362CrossRefGoogle Scholar
  49. Szakács A, Jánosi CS (1989) Volcanic bombs and blocks in the Harghita Mts. DS Inst Geol Geofiz 74(1):181–189Google Scholar
  50. Szakács A, Seghedi I (1986) Chemical diagnosis of the volcanics from the most southernmost part of the Harghita Mountains—proposal for a new nomenclature. Rev. Roum. Geol. Geophys. Geogr. GEOLOGIE 30:41–48, BucureştiGoogle Scholar
  51. Szakács A, Seghedi I (1989) Base surge deposits in the Ciomadul Massif (South Harghita Mts.). DS Inst Geol Geofiz 74(1):175–180Google Scholar
  52. Szakács A, Seghedi I (1995) The Călimani–Gurghiu–Harghita volcanic chain, East Carpathians, Romania: volcanological features. Acta Volcanol 7:145–153Google Scholar
  53. Szakács A, Seghedi I (1996) Neogene/Quaternary volcanism in Romania. In Seghedi I. (ed.) Excursion guide A. The 90th Anniversary Conference of the Geological Institute of Romania, June 12–19, 1996, Anuarul Institutului Geologic al României 69, suppl.2, 33–42, BucharestGoogle Scholar
  54. Szakács A, Seghedi I (2013) The relevance of volcanic hazard in Romania: is there any? Environ Eng Manag J 12(1):125–135Google Scholar
  55. Szakács A, Seghedi I, Pécskay Z (1993) Pecularities of South Harghita Mts. as terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Rev Roum de Géol 37:21–36Google Scholar
  56. Szakács A, Ioane D, Seghedi I, Rogobete M, Pécskay Z (1997) Rates of migration of volcanic activity and magma output along the Calimani-Gurghiu-Harghita volcanic range, East Carpathians, Romania. PANCARDI’97, Przglad Geologiczny 45, 10/2: 1106Google Scholar
  57. Szakács A, Seghedi I, Pécskay Z (2002) The most recent volcanism in the Carpathian-Pannonian Region. Is there any volcanic hazard? Geologica Carpathica, vol. 53. Special Issue, Proceedings of the XVIIth Congress of Carpathian-Balkan Geological Association, 193–194Google Scholar
  58. Székely A (1959) The geomorphological problematics of the volcanic mountains of Transylvania. (Az erdélyi vulkanikus hegyek geomorfológiai problémái.) (in Hungarian). Földrajzi Közlöny, BudapestGoogle Scholar
  59. Tanţău I, Reille M, De Beaulieu JL, Fãrcas S, Goslar T, Paterne M (2003) Vegetation history in the eastern Romanian Carpathians: pollen analysis of two sequences from the Mohoş crater. Veg Hist Archaeobotany 12:113–125CrossRefGoogle Scholar
  60. Teulade A (1989) Téphrologie des formations cendro-ponceuses en mileux lacustres Quaternaires. Méthode et applications au Massif Central francais (Velay) et aux Carpathes orientales roumaines (dépression de Brasov). PhD. thesis. Université d’Aix-Marseiulle II., 298 ppGoogle Scholar
  61. Tietz O, Büchner J, Suhr P, Abratis M, Goth K (2011) Die Geologie des Maruther Schafbegers und der Dubrauker Horken—Aufbau and Entwicklung eines käinozoischen Vulkancomplexes in Ostsahsen. Berichte der Naturforschenden Gesselschaft der Oberlausitz 18, Supplement, 15–48Google Scholar
  62. Vance D, Ayres M, Kelley S, Harris NBW (1998) The thermal response of a metamorphic belt to extension: constraints from laser Ar data on metamorphic micas. Earth Planet Sci Lett 162:153–164CrossRefGoogle Scholar
  63. Vinkler AP, Harangi SZ, Ntaflos T, Szakács A (2007) Petrology and geochemistry of pumices from the Ciomadul volcano (Eastern Carpathians)—implication for petrogenetic processes. (in Hungarian with an English abstract). Foldtani Kozlony 137(1):103–128Google Scholar
  64. White J, Houghton B (2000) Surtseyan and related phreatomagmatic eruptions. Encyclopedia of Volcanoes. H. Sigurdsson, B. F. Houghton, S. R. McNutt, H. Rymer and J. Stix. San Diego, USA, Academic Press: 495–512Google Scholar
  65. Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, 432 ppGoogle Scholar
  66. Wright HMN, Cashman KV, Rosi M, Cioni R (2007) Breadcrust bombs as indicators of Vulcanian eruption dynamics at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexandru Szakács
    • 1
    • 2
  • Ioan Seghedi
    • 2
  • Zoltán Pécskay
    • 3
  • Viorel Mirea
    • 2
  1. 1.Department of Environmental SciencesSapientia UniversityCluj-NapocaRomania
  2. 2.Romanian AcademyInstitute of GeodynamicsBucharestRomania
  3. 3.Hungarian Academy of ScienceInstitute of Nuclear Research (ATOMKI)DebrecenHungary

Personalised recommendations