Skip to main content
Log in

Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the Štiavnica volcano–plutonic complex, Western Carpathians

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Miocene Štiavnica volcano–plutonic complex, Western Carpathians, exposes two nearly coeval intra-caldera plutons, their roof (basement of a stratovolcano), and associated volcanic rocks. The complex thus provides insights into mechanisms of magma chamber growth beneath large volcanoes. As inferred from the anisotropy of magnetic susceptibility (AMS), these plutons were emplaced through significantly different processes: the diorite as a discordant stock with steep fabric and the granodiorite as a tabular, bell-jar pluton. In detail, we interpret that the latter was assembled in two stages. First, an upper “layer” intruded as a thin sill along a major subhorizontal basement/cover detachment. The subhorizontal magnetic fabric and strongly oblate AMS ellipsoid in this layer record intrusive strain where the magma flow paths were subparallel to the pluton roof. Second, in the lower “layer” of the pluton, magnetic foliations dip moderately to the ∼NW and ∼WNW to vertical and are associated with down-dip to subhorizontal lineations and prolate to weakly oblate shapes of the AMS ellipsoids. Such a fabric pattern is compatible with piecemeal floor subsidence, where magma flowed along multiple subsiding fault-bounded blocks. Based on this case example, we develop a conceptual model for magma flow paths and strain patterns for four main modes of floor subsidence: (1) piston (cauldron) subsidence is characterized by convergent flow and radial principal stretching above the magma chamber floor; (2) the piecemeal floor subsidence leads to steep to inclined magma flow paths in conduits along fault-bounded blocks; (3) asymmetric (trapdoor) subsidence produces first divergent flow paths near the conduit sides, changing into convergent paths in the narrower space near the kinematic hinge; and (4) symmetric cantilever (funnel) subsidence will lead to divergent flow from a central feeder and thus circumferential principal stretching of the magma. If the growing pluton develops a “two-layer” structure, all the flow paths and associated strains are affected by the flat-lying pluton roof and will convert into horizontal flattening as the roof is approached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bielik M, Šefara J, Kováč M, Bezák V, Plašienka D (2004) The Western Carpathians—interaction of Hercynian and Alpine processes. Tectonophysics 393:63–86. doi:10.1016/j.tecto.2004.07.044

    Article  Google Scholar 

  • Bonin B, Ethien R, Gerbe MC, Cottin JY, Feraud G, Gagnevin D, Giret A, Michon G, Moine B (2004) The Neogene to recent Rallier-du-Baty nested ring complex, Kerguelen Archipelago (TAAF, Indian Ocean): stratigraphy revisited, implications for cauldron subsidence mechanisms. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc London Spec Pub 234:125–149. doi:10.1144/GSL.SP.2004.234.01.08

  • Borradaile GJ, Henry B (1997) Tectonic applications of magnetic susceptibility and its anisotropy. Earth Sci Rev 42:49–93. doi:10.1016/S0012-8252(96)00044-X

    Article  Google Scholar 

  • Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551. doi:10.1016/j.jsg.2009.09.006

    Article  Google Scholar 

  • Burchardt S, Tanner D, Krumbholz M (2012) The Slaufrudalur pluton, southeast Iceland—an example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping. Geol Soc Am Bull 124:213–227. doi:10.1130/B30430.1

    Article  Google Scholar 

  • Callot JP, Guichet X (2003) Rock texture and magnetic lineation in dykes: a simple analytical model. Tectonophysics 366:207–222. doi:10.1016/S0040-1951(03)00096-9

    Article  Google Scholar 

  • Canales JP, Nedimovic MR, Kent GM, Carbotte SM, Detrick RS (2009) Seismic reflection images of a near-axis melt sill within the lower crust at the Juan de Fuca ridge. Nature 460:89–93. doi:10.1038/nature08095

    Article  Google Scholar 

  • Chadima M, Jelínek V (2009) Anisoft 4.2: Anisotropy data browser for Windows. Agico, Inc

  • Clough CT, Maufe HB, Bailey EB (1909) The cauldron subsidence of Glen Coe and the associated igneous phenomena. Q J Geol Soc London 65:611–678. doi:10.1144/GSL.JGS.1909.065.01-04.35

    Article  Google Scholar 

  • Cobbing EJ, Pitcher WS (1972) The Coastal Batholith of central Peru. J Geol Soc London 128:421–454. doi:10.1144/gsjgs.128.5.0421

    Article  Google Scholar 

  • Cogné JP, Perroud H (1988) Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville granite, NW France. Phys Earth Planet Int 51:264–270. doi:10.1016/0031-9201(88)90068-4

    Article  Google Scholar 

  • Corry CE (1988) Laccoliths: mechanics of emplacement and growth. Geol Soc Am Spec Paper 220:1–114. doi:10.1130/SPE220-p1

    Article  Google Scholar 

  • Cruden AR (1990) Flow and fabric development during the diapiric rise of magma. J Geol 98:681–698

  • Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc London 155:853–862. doi:10.1144/gsjgs.155.5.0853

    Article  Google Scholar 

  • Cruden AR, McCaffrey KJW (2001) Growth of plutons by floor subsidence: implications for rates of emplacement, intrusion spacing and melt-extraction mechanisms. Phys Chem Earth 26:303–315. doi:10.1016/S1464-1895(01)00060-6

  • Cruden AR, Tobisch OT, Launeau P (1999) Magnetic fabric evidence for conduit-fed emplacement of a tabular intrusion: Dinkey Creek Pluton, central Sierra Nevada batholith, California. J Geophys Res 104:10511–10530. doi:10.1029/1998JB900093

  • Froitzheim N, Plašienka D, Schuster R (2008) Alpine tectonics of the Alps and Western Carpathians. In: McCann T (ed) The geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 1141–1232

  • Furman T, Meyer PS, Frey F (1992) Evolution of Icelandic central volcanoes—evidence from the Austurhorn intrusion, southeastern Iceland. Bull Volcanol 55:45–62. doi:10.1007/BF00301119

    Article  Google Scholar 

  • Geoffroy L, Callot JP, Aubourg C, Moreira M (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14:183–190. doi:10.1046/j.1365-3121.2002.00412.x

    Article  Google Scholar 

  • Grocott J, Arevalo C, Welkner D, Cruden A (2009) Fault-assisted vertical pluton growth: Coastal Cordillera, north Chilean Andes. J Geol Soc London 166:295–301. doi:10.1144/0016-76492007-165

    Article  Google Scholar 

  • Gudmundsson A (2011) Deflection of dykes into sills at discontinuities and magma-chamber formation. Tectonophysics 500:50–64. doi:10.1016/j.tecto.2009.10.015

    Article  Google Scholar 

  • Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geotherm Res 237–238:19–41. doi:10.1016/j.jvolgeores.2012.05.015

    Article  Google Scholar 

  • Harangi S, Downes H, Thirlwall M, Gmeling K (2007) Geochemistry, petrogenesis and geodynamic relationships of Miocene calc-alkaline volcanic rocks in the Western Carpathian Arc, Eastern Central Europe. J Petrol 48:2261–2287. doi:10.1093/petrology/egm059

    Article  Google Scholar 

  • He B, Xu YG, Paterson S (2009) Magmatic diapirism of the Fangshan pluton, southwest of Beijing, China. J Struct Geol 31:615–626. doi:10.1016/j.jsg.2009.04.007

    Article  Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82. doi:10.1007/BF01450244

    Article  Google Scholar 

  • Hrouda F, Kahan Š (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains. N Slovakia J Struct Geol 13:431–442. doi:10.1016/0191-8141(91)90016-C

    Article  Google Scholar 

  • Hrouda F, Lanza R (1989) Magnetic fabric in the Biella and Traversella stocks (Periadriatic Line): implications for the mode of emplacement. Phys Earth Planet Inter 56:337–348. doi:10.1016/0031-9201(89)90168-4

    Article  Google Scholar 

  • Huges RA, Evans JA, Noble SR, Rundle CC (1996) U–Pb chronology of the Ennerdale and Eskdale intrusions supports sub-volcanic relationships with the Borrowdale Volcanic Group (Ordovician, English Lake District). J Geol Soc London 153:33–38. doi:10.1144/gsjgs.153.1.0033

    Article  Google Scholar 

  • Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79:T63–T67. doi:10.1016/0040-1951(81)90110-4

  • Karell F, Ehlers C, Airo ML, Selonen O (2009) Intrusion mechanisms and magnetic fabrics of the Vehmaa rapakivi granite batholith in SW Finland. Geotect Res 96:53–68. doi:10.1127/1864-5658/09/96-0053

    Article  Google Scholar 

  • Koděra P, Lexa J, Rankin AH, Fallick AE (2004) Fluid evolution in a subvolcanic granodiorite pluton related to Fe and Pb–Zn mineralization, Banská Štiavnica ore district, Slovakia. Econ Geol 99:1745–1770. doi:10.2113/gsecongeo.99.8.1745

    Google Scholar 

  • Koděra P, Lexa J, Rankin AH, Fallick AE (2005) Epithermal gold veins in a caldera setting: Banská Hodruša, Slovakia. Miner Deposita 39:921–943. doi:10.1007/s00126-004-0449-5

    Article  Google Scholar 

  • Konečný V (1971) Evolutionary stages of the Banská Štiavnica caldera and its post-volcanic structures. Bull Volcanol 35:95–116. doi:10.1007/BF02596810

    Article  Google Scholar 

  • Konečný P (2002) Evolution of magmatic reservoir underneath the Štiavnica stratovolcano. Dissertation, Comenius University, Bratislava

  • Konečný P, Lexa J, Hostričová V (1995) The Central Slovakia Neogene volcanic field: a review. Acta Vulcanol 7:63–78

    Google Scholar 

  • Konečný V, Lexa J, Halouzka R, et al (1998a) Explanations to the geological map of the Štiavnické vrchy and Pohronský Inovec mountain ranges (Štiavnica stratovolcano), State Geological Institute of Dionýz Štúr, Bratislava

  • Konečný V, Lexa J, Halouzka R, et al (1998b) Geologic map of Štiavnické vrchy a Pohronský Inovec mountain ranges 1: 50,000, State Geological Institute of Dionýz Štúr, Bratislava

  • Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho–Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123

    Article  Google Scholar 

  • Lexa J, Štohl J, Konečný V (1999) The Banská Štiavnica ore district: relationship between metallogenetic processes and the geological evolution of a stratovolcano. Miner Deposita 34:639–654. doi:10.1007/s001260050225

    Article  Google Scholar 

  • Lipman PW (1984) The roots of ash flow calderas in Western North America: windows into the tops of granitic batholiths. J Geophys Res 89:8801–8841. doi:10.1029/JB089iB10p08801

    Article  Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geosphere 3:42–70. doi:10.1130/GES00061.1

    Article  Google Scholar 

  • McIntosh WC, Chapin CE (2004) Geochronology of the central Colorado volcanic field. New Mexico Bureau Geol Min Res Bull 16:205–238

  • McNulty BA, Tobisch OT, Cruden AR, Gilder S (2000) Multistage emplacement of the Mount Givens pluton, central Sierra Nevada batholith, California. Geol Soc Am Bull 112:119–135. doi:10.1130/0016-7606(2000)112

    Article  Google Scholar 

  • Miller RB, Paterson SR (1999) In defense of magmatic diapirs. J Struct Geol 21:1161–1173. doi:10.1016/S0191-8141(99)00033-4

    Article  Google Scholar 

  • Myers JS (1975) Cauldron subsidence and fluidization: mechanisms of intrusion of the Coastal Batholith of Peru into its own volcanic ejecta. Geol Soc Am Bull 86:1209–1220. doi:10.1130/0016-7606(1975)86

    Article  Google Scholar 

  • Nagaoka Y, Nishida K, Aoki Y, Takeo M, Ohminato T (2012) Seismic imaging of magma chamber beneath an active volcano. Earth Planet Sci Lett 333–334:1–8. doi:10.1016/j.epsl.2012.03.034

    Article  Google Scholar 

  • Nagata T (1962) Rock magnetism. Maruzen, Tokyo

    Google Scholar 

  • Nelson ST, Davidson JP, Heizler MT, Kowallis BJ (1999) Tertiary tectonic history of the southern Andes: the subvolcanic sequence to the Tatara–San Pedro volcanic complex, lat 36°S. Geol Soc Am Bull 111:1387–1404. doi:10.1130/0016-7606(1999)111

    Article  Google Scholar 

  • Němčok M, Konečný P, Lexa O (2000) Calculations of tectonic, magmatic and residual stress in the Stiavnica stratovolcano, Western Carpathians: implications for mineral precipitation paths. Geol Carpath 51:19–36

  • O’Driscoll B, Troll VR, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: reevaluating the ring-dike concept. Geology 34:189–192. doi:10.1130/G22294.1

    Article  Google Scholar 

  • Paterson SR, Farris DW (2008) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Trans Roy Soc Edinb Earth Sci 97:397–413. doi:10.1017/S026359330000153X

    Article  Google Scholar 

  • Paterson S, Vernon R (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380. doi:10.1130/0016-7606(1995)107

    Article  Google Scholar 

  • Paterson SR, Fowler TK, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Geol Soc Am Spec Paper 315:115–123. doi:10.1130/0-8137-2315-9.115

    Google Scholar 

  • Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi:10.1016/S0024-4937(98)00022-X

    Article  Google Scholar 

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57:511–530

  • Petronis MS, O’Driscoll B (2013) Emplacement of the early Miocene Pinto Peak intrusion, Southwest Utah, USA. Geochemistry, Geophys Geosystems 14:5128–5145. doi:10.1002/2013GC004930

    Article  Google Scholar 

  • Petronis MS, Hacker DB, Holm DK, Geissman JW, Harlan SS (2004) Magmatic flow paths and palaeomagnetism of the Miocene Stoddard Mountain laccolith, Iron Axis region, Southwestern Utah, USA. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and application. Geol Soc London Spec Publ 238:251–283. doi:10.1144/GSL.SP.2004.238.01.16

  • Philpotts AR, Philpotts DE (2007) Upward and downward flow in a camptonite dike as recorded by deformed vesicles and the anisotropy of magnetic susceptibility (AMS). J Volcanol Geotherm Res 161:81–94. doi:10.1016/j.jvolgeores.2006.11.006

    Article  Google Scholar 

  • Plašienka D (2003) Development of basement-involved fold and thrust structures exemplified by the Tatric–Fatric–Veporic nappe system of the Western Carpathians (Slovakia). Geodin Acta 16:21–38. doi:10.1016/S0985-3111(02)00003-7

    Article  Google Scholar 

  • Ramsay JG (1989) Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J Struct Geol 11:191–209. doi:10.1016/0191-8141(89)90043-6

    Article  Google Scholar 

  • Roobol MJ (1974) The geology of the Vesturhorn intrusion, SE Iceland. Geol Mag 111:273–286. doi:10.1017/S001675680003867X

    Article  Google Scholar 

  • Seager WR, McCurry M (1988) The cogenetic Organ cauldron and batholith, South Central New Mexico: evolution of a large-volume ash flow cauldron and its source magma chamber. J Geophys Res 93:4421–4433. doi:10.1029/JB093iB05p04421

    Article  Google Scholar 

  • Štohl J, Hojstričová V, Lexa J, Rojkovičová L, Žáková E, Gargulák M, Staňa Š, Kantor J, Ďurkovičová J (1990) Evaluation of the bore hole B-1/2000 m, Horná Roveň. Open file report. State Geological Institute of Dionýz Štúr, Bratislava

  • Tarling DH, Hrouda F (1993) Magnetic anisotropy of rocks. Chapman and Hall, London

    Google Scholar 

  • Twiss RJ, Moores EM (1992) Structural geology. Freeman, New York

    Google Scholar 

  • Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electronic Geosci 5:1–23. doi:10.1007/s10069-000-0002-3

    Google Scholar 

  • Vernon RH, Johnson SE, Melis EA (2004) Emplacement-related microstructures in the margin of a deformed pluton: the San José tonalite, Baja California, México. J Struct Geol 26:1867–1884. doi:10.1016/j.jsg.2004.02.007

  • Wyss M, Shimazaki K, Wiemer S (1997) Mapping active magma chambers by b values beneath the off-Ito volcano, Japan. J Geophys Res 102:20413–20422. doi:10.1029/97JB01074

    Article  Google Scholar 

  • Yoshinobu AS, Fowler TK, Paterson SR, Llambias E, Tickyj H, Sato AM (2003) A view from the roof: magmatic stoping in the shallow crust, Chita pluton, Argentina. J Struct Geol 25:1037–1048. doi:10.1016/S0191-8141(02)00149-9

    Article  Google Scholar 

Download references

Acknowledgments

Constructive comments to the original manuscript by Michael S. Petronis, Alexander R. Cruden, and Bernard Henry, as well as careful editorial handling by Agust Gudmundsson and James D. L. White are highly appreciated. František Hrouda, Peter Koděra, and František V. Holub are thanked for valuable discussions and Jan Flašar for help with the digital elevation model. This study is part of the Ph.D. research of Filip Tomek, supported by the Charles University projects PRVOUK P44, SVV261203, Grant Agency of the Czech Republic Grant No. P210/12/1385 (to Jiří Žák) and Academy of Sciences of the Czech Republic Research Plan RVO 67985831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Tomek.

Additional information

Editorial responsibility: A. Gudmundsson

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 53 kb)

High Resolution Image (TIFF 1559 kb)

ESM 2

(PDF 434 kb)

ESM 3

(PDF 121 kb)

ESM 4

(PDF 509 kb)

ESM 5

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomek, F., Žák, J. & Chadima, M. Magma flow paths and strain patterns in magma chambers growing by floor subsidence: a model based on magnetic fabric study of shallow-level plutons in the Štiavnica volcano–plutonic complex, Western Carpathians. Bull Volcanol 76, 873 (2014). https://doi.org/10.1007/s00445-014-0873-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0873-z

Keywords

Navigation