Skip to main content

Advertisement

Log in

The 2011 Hudson volcano eruption (Southern Andes, Chile): Pre-eruptive inflation and hotspots observed with InSAR and thermal imagery

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Hudson is one of the most active volcanoes in the Southern Andes—it had one of the largest eruptions of the 20th century in 1991 (VEI = 5) and smaller eruptions in 1971 (VEI = 3), maybe 1973, and 2011 (VEI of 1-2). We use satellite-based interferometric synthetic aperture radar (InSAR) and thermal imagery to characterize the activity of Hudson between 2004 and 2011 and during the 2011 eruption. InSAR data show that the volcano inflated between 2004 and 2010 with a maximum change rate of between 2 and 3 cm/yr—about half of the deformation rate observed during a previous deformation episode from 1993–1999. Inversion for an inflating point source suggests magma accumulation beneath the SW part of the caldera at an average depth of 10 km. This inferred source is deeper than both the sources estimated for the magma chamber of the 1991 eruption (from petrology) and for the 1993–1999 deformation event. Also, the deformation from 2004–2010 is centered at a slightly different location and has a smaller volume change than that between 1993–1999—further indicating that there is either a large magma reservoir or several separate ones. While the deformation center is a few km from the eruption location near the caldera rim, the two are possibly linked since the predicted static Coloumb stress changes due to the inferred inflation source would encourage unclamping on potential faults in the caldera rim. We also analize nighttime satellite thermal images from MODIS and ASTER. While MODIS did not show any unambiguous evidence for hot spots, ASTER thermal imagery show that at least four months before the eruption there were locations with temperatures 7–8ºK above background. Lahars observed by helicopter overflights on 4 March 2011 and October 2011 suggest that the hotspots may have been caused by lakes or subglacial melting. There is no InSAR data available for the months immediately preceding the eruption, but the ASTER thermal imagery results may indicate an increase in geothermal activity that could have been used to forecast the eruption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acocella V (2007) Understanding caldera structure and development: An overview of analogue models compared to natural calderas. Earth Sci Rev 85:125–160. doi:10.1016/j.earscirev.2007.08.004

    Article  Google Scholar 

  • Agurto-Detzel H, Rietbrock A, Bataille K, Miller M, Iwamori H, Priestley K (2014) Seismicity distribution in the vicinity of the Chile triple junction, Aysén Region, Southern Chile. J S Am Earth Sci 51(4):1–11. doi:10.1016/j.jsames.2013.12.011

    Google Scholar 

  • Albino F, Pinel V, Sigmundsson F (2010) Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla. Geophys J Int 181:1510–1524. doi:10.1111/j.1365-246X.2010.04603.x

    Google Scholar 

  • Amigo A, Silva C, Orozco G, Bertín D, Lara L (2012) La crisis eruptiva del volcán Hudson durante Octubre-Noviembre 2011. XIII Congreso Geológico Chileno, Antofagasta, pp 457–459

    Google Scholar 

  • Battaglia M, Segall P, Roberts C (2003) The mechanics of unrest at Long Valley caldera, California. 2. Constraining the nature of the source using geodetic and micro-gravity data. J Volcanol Geotherm Res 127(3–4):219–245. doi:10.1016/S0377-0273(03)00171-9

    Article  Google Scholar 

  • Best JL (1992) Sedimentology and event timing of a catastrophic volcaniclastic mass flow, Volcán Hudson, Southern Chile. Bull Volcanol 54:299–318

    Article  Google Scholar 

  • Chen CW, Zebker HA (2002) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A 18(2):338–351. doi:10.1364/JOSAA.18.000338

    Article  Google Scholar 

  • Constantine EK, Bluth GJS, Rose WI (2000) TOMS and AVHRR observations of drifting volcanic clouds from the August 1991 eruptions of Cerro Hudson. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote Sensing of Active Volcanism 116. AGU, Washington DC, pp 45–64. doi:10.1029/GM116p0045

    Chapter  Google Scholar 

  • Dvorak JJ, Dzurisin D (1997) Volcano geodesy: the search for magma reservoirs and the formation of eruptive vents. Rev Geophs 35:343–384. doi:10.1029/97RG00070

    Article  Google Scholar 

  • Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41:1001. doi:10.1029/2001RG000107, 1

    Article  Google Scholar 

  • Dzurisin D, Lu Z (2006) Interferometric Synthetic Aperture Radar. In: Dzurisin D (ed) Volcano Deformation. Springer, Berlin, pp 153–194

    Chapter  Google Scholar 

  • Farr TG et al (2007) The Shuttle Radar Topography Mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Feigl KL, Le Mevel H, Ali ST, Córdova L, Andersen NL, DeMets C, Singer BS (2014) Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic Zone (Chile) 2007–2012. Geophys J Int 196(2):885–901. doi:10.1093/gji/ggt438

    Article  Google Scholar 

  • Folch A, Gottsmann J (2006) Faults and ground uplift at active calderas. In: Troise C, De Natale G, Kilburn CRJ (eds). Mechanisms of Activity and Unrest at Large Calderas 269. Geol Soc London, pp. 109–120. doi: 10.1144/GSL.SP.2006.269.01.07

  • Fuenzalida R, Espinoza W (1974) Hallazgo de una caldera volcánica en la provincia de Aysén. Rev Geol Chile 1:64–66. doi:10.5027/andgeoV1n1-a04

    Google Scholar 

  • Fournier TJ, Pritchard ME, Riddick SN (2010) Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis. Geochem Geophys Geosyst 11:Q01003. doi:10.1029/2009GC002558

    Google Scholar 

  • Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S, Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans Geosc Rem Sens 36:1113–1126. doi:10.1109/36.700995

    Article  Google Scholar 

  • Geyer A, Gottsmann J (2010) The influence of mechanical stiffness on caldera deformation and implications for the 1971–1984 Rabaul uplift (Papua New Guinea). Tectonophysics 483(3–4):399–412. doi:10.1016/j.tecto.2009.10.029

    Article  Google Scholar 

  • Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry: two-dimensional phase unwrapping. Rad Sci 23(4):713–720. doi:10.1029/RS023i004p00713

    Article  Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Article  Google Scholar 

  • Henderson ST, Pritchard ME (2013) Decadal volcanic deformation in the Central Andes Volcanic Zone revealed by InSAR time series. Geochem Geophys Geosyst 14:1358–1374. doi:10.1002/ggge.20074

    Article  Google Scholar 

  • Hickey J, Gottsmann J, del Potro R (2013) The large-scale surface uplift in the Altiplano-Puna region of Bolivia: A parametric study of source characteristics and crustal rheology using finite element analysis. Geochem Geophys Geosyst 14:540–555. doi:10.1002/ggge.20057

    Article  Google Scholar 

  • Hurwitz S, Christiansen LB, Hsieh PA (2007) Hydrothermal fluid flow and deformation in large calderas: Inferences from numerical simulations. J Geophys Res 112:B02206. doi:10.1029/2006JB004689

    Google Scholar 

  • Gudmundsson A (2006) How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci Rev 79:1–31. doi:10.1016/j.earscirev.2006.06.006

    Article  Google Scholar 

  • Gutierrez F, Gioncada A, González-Ferran O, Lahsen A, Mazzuoli R (2005) The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): An example of volcanism associated with ridge-trench collision environment. J Volcanol Geotherm Res 145(3–4):207–233. doi:10.1016/j.jvolgeores.2005.01.014

    Article  Google Scholar 

  • Jay J, Pritchard ME, Lara LE, Costa F, Singer BS (2012) Deformation of Cordon Caulle Volcano (Chile) measured by InSAR from 2007 to 2011 and its relation to magmatic pre-eruptive conditions and processes from petrological inferences. AGU Fall Meet 2012 Abstr V53B-2818

  • Jay J, et al (2013) Volcanic hotspots of the central and southern Andes as seen from space by ASTER and MODVOLC between the years 2000 and 2010. In: Pyle DM, Mather TA, Biggs J (eds) Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling. Geol Soc London Spec Pub 380. dx.doi.org/10.1144/SP380.1

  • Jónsson S, Zebker H, Amelung F (2005) On trapdoor faulting at Sierra Negra volcano, Galápagos. J Volcanol Geotherm Res 144:59–71. doi:10.1016/j.jvolgeores.2004.11.029

    Article  Google Scholar 

  • Jónsson S (2009) Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonoph 471(1–2):36–44. doi:10.1016/j.tecto.2008.08.005

    Article  Google Scholar 

  • Harris AJL et al (2000) Real-time satellite monitoring of volcanic hot spots. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote Sensing of Active Volcanism 116. AGU, Washington DC, pp 139–159. doi:10.1029/GM116p0139

    Chapter  Google Scholar 

  • Holtkamp SG, Pritchard ME, Lohman RB (2011) Earthquake swarms in South America. Geophys J Int 187:128–146. doi:10.1111/j.1365-246X.2011.05137.x

    Article  Google Scholar 

  • King GCP, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seis Soc Am 84(3):935–953

    Google Scholar 

  • Koulakov I (2013) Studying deep source of volcanism using multiscale seismic tomography. J Volcanol Geotherm Res 257:205–226. doi:10.1016/j.jvolgeores.2013.03.012

    Article  Google Scholar 

  • Kratzmann D, Carey SN, Scasso RA, Naranjo JA (2009) Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bull Volcanol 71(4):419–439. doi:10.1007/s00445-008-0243-x

    Article  Google Scholar 

  • Kratzmann DJ, Carey SN, Scasso RA, Naranjo JA (2010a) Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contrib Mineral Petrol 159(2):237–264. doi:10.1007/s00410-009-0426-1

    Article  Google Scholar 

  • Kratzmann DJ, Carey SN, Fero J, Scasso RA, Naranjo JA (2010b) Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. J Volcanol Geotherm Res 190(3–4):337–352. doi:10.1016/j.jvolgeores.2009.11.021

    Article  Google Scholar 

  • Lees J (2007) Seismic tomography of magmatic systems. J Volcanol Geotherm Res 167(1–4):37–56. doi:10.1016/j.jvolgeores.2007.06.008

    Article  Google Scholar 

  • Lengliné O, Marsan D, Got J-L, Pinel V, Ferrazzini V, Okubo PG (2008) Seismicity and deformation induced by magma accumulation at three basaltic volcanoes. J Geophys Res 113:B12305. doi:10.1029/2008JB005937

    Article  Google Scholar 

  • Lisowski M (2006) Analytical volcano deformation source modes. In: Dzurisin D (ed) Volcano Deformation. Springer, Berlin, pp 279–304

    Google Scholar 

  • Lohman RB, Simons M (2005) Some thoughts on the use of InSAR data to constrain models of surface deformation. Geochem Geophys Geosyst 6:Q01007. doi:10.1029/2004GC000841

    Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D, Rykhus R, Wicks C (2003) Magma supply dynamics at Westdahl volcano, Alaska, modeled from satellite radar interferometry. J Geophys Res 108:2354. doi:10.1029/2002JB002311 B7

    Google Scholar 

  • Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation. J Geophys Res 110:B02403. doi:10.1029/2004JB003148

    Google Scholar 

  • Lu Z, Dzurisin D, Biggs J, Wicks C, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J Geophys Res 115:B00B02. doi:10.1029/2009JB006969

    Google Scholar 

  • Lu Z, Dzurisin D (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008. J Geophys Res 115:B00B03. doi:10.1029/2009JB006970

    Google Scholar 

  • Manconi A, Walter TR, Amelung F (2007) Effects of mechanical layering on volcano deformation. Geophys J Int 170:952–958. doi:10.1111/j.1365-246X.2007.03449.x

    Article  Google Scholar 

  • Masterlark T (2007) Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions. J Geophys Res 112:B06419. doi:10.1029/2006JB004860

    Google Scholar 

  • Masterlark T, Haney M, Dickinson H, Fournier T, Searcy C (2010) Rheologic and structural controls on the deformation of Okmok volcano, Alaska: FEMs, InSAR, and ambient noise tomography. J Geophys Res 115:B02409. doi:10.1029/2009JB006324

    Google Scholar 

  • McGarr A (1988) On the state of lithospheric stress in the absence of applied tectonic forces. J Geophys Res 93(B11):13609–13617. doi:10.1029/JB093iB11p13609

    Article  Google Scholar 

  • McTigue DF (1987) Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. J Geophys Res 92(B12):12931–12940. doi:10.1029/JB092iB12p12931

    Article  Google Scholar 

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive supereruptions. Elements 4(1):11–15. doi:10.2113/GSELEMENTS.4.1.11

    Article  Google Scholar 

  • Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surface around them. Bull Earthq Res Inst 36:99–134

    Google Scholar 

  • Murphy SW, Wright R, Oppenheimer C, Souza Filho CR (2013) MODIS and ASTER synergy for characterizing thermal volcanic activity. Rem Sens Environ 131:195–205. doi:10.1016/j.rse.2012.12.005

    Article  Google Scholar 

  • Naranjo JA, Moreno H, Banks N (1993) La erupción del Volcán Hudson en 1991 (46° S), Región XI, Aisén. Chile. Serv Nac Geol Min Bol 44:1–50

    Google Scholar 

  • Naranjo JA, Stern C (1998) Holocene explosive activity of Hudson volcano, southern Andes. Bull Volcanol 59(4):291–306. doi:10.1007/s004450050193

    Article  Google Scholar 

  • Newman AV, Dixon TH, Gourmelen N (2006) A four-dimensional viscoelastic deformation model for Long Valley Caldera, California, between 1995 and 2000. J Volcanol Geotherm Res 150(1–3):244–269. doi:10.1016/j.jvolgeores.2005.07.017

    Article  Google Scholar 

  • Nostro C, Stein RS, Cocco M, Belardinelli ME, Marzocchi W (1998) Two-way coupling between Vesuvius eruptions and southern Apennine earthquakes, Italy, by elastic stress transfer. J Geophys Res 103(B10):24487–24504. doi:10.1029/98JB00902

    Article  Google Scholar 

  • Orihashi Y, Naranjo JA, Motoki A, Sumino H, Hirata D, Anma R, Nagao K (2004) Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: new constraints from K- Ar ages. Rev Geol Chile 31(2):207–224. doi:10.5027/andgeoV31n2-a02

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Amer 82(2):1018–1040

    Google Scholar 

  • OVDAS (2011a) Reportes Especiales de Actividad Volcánica, No 14 y 15, Actividad del Volcán Hudson. Región de Aysén. Serv Nac Geol Min, Temuco

    Google Scholar 

  • OVDAS (2011b) Reportes Especiales de Actividad Volcánica, No 20–34, Actividad del Volcán Hudson. Región de Aysén. Serv Nac Geol Min, Temuco

    Google Scholar 

  • OVDAS (2011c) Reporte de Actividad Volcánica, No 12. Región de Aysén. Serv Nac Geol Min, Temuco, Chile

    Google Scholar 

  • Palano M, Guarrera E, Mattia M (2012) GPS ground deformation patterns at Mount St. Helens (Washington, USA) from 2004 to 2010. Terra Nova 24:148–155. doi:10.1111/j.1365-3121.2011.01049.x

    Article  Google Scholar 

  • Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geotherm Res 135:13–28. doi:10.1016/j.jvolgeores.2003.12.018

    Article  Google Scholar 

  • Pinel V, Jaupart C (2000) The effect of edifice load on magma ascent beneath a volcano. Phil Trans R Soc Lond A 358(1770):1515–1532. doi:10.1098/rsta.2000.0601

    Article  Google Scholar 

  • Pinel V, Jaupart C (2003) Magma chamber behavior beneath a volcanic edifice. J Geophys Res 108(B2):2072. doi:10.1029/2002JB001751

    Article  Google Scholar 

  • Pinel V, Jaupart C, Albino F (2010) On the relationship between cycles of eruptive activity and volcanic edifice growth. J Volcanol Geotherm Res 194(4):150–164. doi:10.1016/j.jvolgeores.2010.05.006

    Article  Google Scholar 

  • Pritchard ME, Simons M (2004a) An InSAR-based survey of volcanic deformation in the Southern Andes. Geophys Res Lett 31:L15610. doi:10.1029/2004GL020545

    Article  Google Scholar 

  • Pritchard ME, Simons M (2004b) An InSAR-based survey of volcanic deformation in the central Andes. Geochem Geophys Geosyst 5:Q02002. doi:10.1029/2003GC000610

    Google Scholar 

  • Pritchard ME, Jay JA, Aron F, Henderson ST, Lara LE (2013) Subsidence at southern Andes volcanoes induced by the 2010 Maule, Chile earthquake. Nat Geosci 6:632–636. doi:10.1038/ngeo1855

    Article  Google Scholar 

  • Rivera A, Bown F (2013) Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone (37º–46ºS), Chilean Andes. J S Am Earth Sci 45:345–356. doi:10.1016/j.jsames.2013.02.004

    Article  Google Scholar 

  • Rosen PA, Hensley S, Peltzer G, Simons M (2004) Updated repeat orbit interferometry package released. EOS 85(5):47–47. doi:10.1029/2004EO050004

    Article  Google Scholar 

  • Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138:479–494. doi:10.1046/j.1365-246X.1999.00876.x

    Article  Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton University Press, Princeton

    Google Scholar 

  • Sigmundsson F (2006) Volcano Dynamics. In: Sigmundsson F (ed) Iceland Geodynamics. Springer, Berlin, pp 69–102

    Google Scholar 

  • Sigmundsson F, Pinel V, Lund B, Albino F, Pagli C, Geirsson H, Sturkell E (2010) Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland. Phil Trans R Soc 368:2519–2534. doi:10.1098/rsta.2010.0042

    Article  Google Scholar 

  • Simons M, Rosen P (2007) Interferometric synthetic aperture radar geodesy. In Herring T (ed) Treatise on Geophysics 3. Elsevier Press, pp 391–446. doi: 10.1016/B978-044452748-6.00059-6

  • Steffke AM, Harris AJL (2011) A review of algorithms for detecting volcanic hot spots in satellite infrared data. Bull Volcanol 73(9):1109–1137. doi:10.1007/s00445-008-0243-x

    Article  Google Scholar 

  • Stern CR (1991) Mid-Holocene tephra on Tierra del Fuego (54°S) derived from the Hudson Volcano (46°S): evidence for a large explosive eruption. Rev Geol Chile 18(2):139–146. doi:10.5027/andgeoV18n2-a04

    Google Scholar 

  • Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206. doi:10.4067/S0716-02082004000200001

    Article  Google Scholar 

  • Touloukian YS, Judd WR, Roy RF (1981) Physical properties of rocks and minerals. Data Series Mat Prop 1–2. Mc Graw-Hill, New-York

    Google Scholar 

  • Trasatti E, Giunchi C, Bonafede M (2003) Effects of topography and rheological layering on ground deformation in volcanic regions. J Volcanol Geotherm Res 122(1–2):89–110. doi:10.1016/S0377-0273(02)00473-0

    Article  Google Scholar 

  • Troise C, Pingue F, De Natale G (2003) Coulomb stress changes at calderas: Modelling the seismicity of Campi Flegrei (southern Italy). J Geophys Res 108(B6):2292. doi:10.1029/2002JB002006

    Article  Google Scholar 

  • Wright TJ, Parsons BE, Lu Z (2004a) Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett 31:L01607. doi:10.1029/2003GL018827

    Google Scholar 

  • Wright R, Flynn L, Garbeil H, Harris A, Pilger E (2002) Automated volcanic eruption detection using MODIS. Rem Sens Environ 82(1):135–155. doi:10.1016/S0034-4257(02)00030-5

    Article  Google Scholar 

  • Wright R, Flynn LP, Garbeil H, Harris AJL, Pilger E (2004b) MODVOLC: near real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 135(1–2):29–49. doi:10.1016/j.jvolgeores.2003.12.008

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of the Generic Mapping Tools released. Eos Trans AGU 79(47):579

    Article  Google Scholar 

  • Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry. Geophys Res Lett 25(10):1549–1552

    Article  Google Scholar 

  • Zebker HA, Amelung F, Jonsson S (2000) Remote sensing of volcano surface and internal processes using radar interferometry. In: Mouginis-Mark PJ, Crisp JA, Fink JH (eds) Remote Sensing of Active Volcanism 116. AGU, Washington DC, pp 179–205. doi:10.1029/GM116p0179

    Chapter  Google Scholar 

Download references

Acknowledgments

We acknowledge Editor James White, Associate Editor Sonia Calvari, Mimmo Palano and an anonymous reviewer for their comments which improved the quality of this manuscript. We are grateful to Servicio Nacional de Geología y Minería (SERNAGEOMIN)—Observatorio Volcanológico de los Andes del Sur (OVDAS), Chile, for the access to the eruption reports and Gonzalo Hermosilla (SERNAGEOMIN, Oficina Técnica Coyhaique) for the access to the eruption photographs and Alvaro Amigo, Luis Lara, Andrés Tassara and Andrés Rivera for comments and suggestions. ALOS data was provided by the Japanese Space Agency through the Alaska Satellite Facility and NASA. MODIS data (Product MODIS Calibrated Radiances 5-Min L1B Swath 1 km V005) are from the NASA Aqua and Terra satellites and ASTER data (AST08 Surface Kinetic Temperature) are from the NASA Terra satellite. F.D. acknowledges CONICYT-Becas Chile for a PhD scholarship. M.E.P. and F.D. were partly supported by NASA grants NNX12AO31G and NNX12AM24G issued through the Science Mission Directorate’s Earth Science Division. The GMT software was used to create several Figures (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Antonio Naranjo.

Additional information

Editorial responsibility: S. Calvari

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delgado, F., Pritchard, M., Lohman, R. et al. The 2011 Hudson volcano eruption (Southern Andes, Chile): Pre-eruptive inflation and hotspots observed with InSAR and thermal imagery. Bull Volcanol 76, 815 (2014). https://doi.org/10.1007/s00445-014-0815-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0815-9

Keywords

Navigation