Skip to main content
Log in

Rhyolitic volcanism of the central Snake River Plain: a review

  • Review Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The central Snake River Plain (CSRP) of southern Idaho and northern Nevada, USA, forms part of the Columbia River–Yellowstone large igneous province. Volcanic rocks of the province are compositionally bimodal (basalt–rhyolite), and the rhyolites produce a broadly time-transgressive record of a hotspot which is currently located under Yellowstone. Snake River Plain rhyolites represent hot (>850 °C), dry magmas and have field characteristics consistent with high emplacement temperatures. Individual ignimbrite sheets reach 1,000 km3 and exhibit little to no compositional zonation on a large scale but reveal considerable complexity on a crystal scale, particularly with regard to pyroxene compositions. Multiple pyroxene compositions may exist in a single ignimbrite which, along with multiple glass compositions in widely dispersed fallout tephra, suggests complex storage of rhyolite prior to eruption. Unlike most igneous rocks, the mineral cargo of the CSRP rhyolites exhibits little isotopic variability, with unimodal 87Sr/86Sr values returned from plagioclase grains inferred to represent the combination of strong crystal–melt coupling and rapid diffusional re-equilibriation. All the rhyolites within the CSRP have a characteristic low-δ 18O signature; with >20,000 km3 of rhyolite exhibiting this depletion, the CSRP represents the largest low-δ 18O province on Earth. The low-18O nature of the rhyolites requires assimilation of hydrothermally altered materials which may be from altered Eocene batholithic rocks or from down-dropped intra-caldera tuffs. The wide range of crustal assimilants, with highly variable radiogenic isotope characteristics, available in the CSRP is permissive of a variety of petrogenetic models based on radiogenic isotopic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Almeev RR, Bolte T, Nash BP, Holtz F, Erdmann M, Cathey HE (2012) High-temperature, low-H2O silicic magmas of the Yellowstone hotspot: an experimental study of rhyolite from the Bruneau–Jarbidge Eruptive Center, Central Snake River Plain, USA. J Petrol 53(9):1837–1866

    Article  Google Scholar 

  • Anders M, Saltzman J, Hemming SJ (2009) Neogene tephra correlations in eastern Idaho and Wyoming: implications for Yellowstone hotspot-related volcanism and tectonic activity. Geol Soc Am Bull 121(5–6):837–856. doi:10.1130/B26300.1

    Article  Google Scholar 

  • Andrews GDM, Branney MJ (2011) Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey’s Landing, southern Idaho. Geol Soc Am Bull 123:725–743. doi:10.1130/B30167.1

    Article  Google Scholar 

  • Andrews GDM, Branney MJ, Bonnichsen B, McCurry M (2008) Rhyolitic ignimbrites in the Rogerson Graben, southern Snake River Plain volcanic province: volcanic stratigraphy, eruption history and basin evolution. Bull Volcanol 70(3):269–291. doi:10.1007/s00445-007-0139-0

    Article  Google Scholar 

  • Armstrong RL, Leeman WP, Malde HE (1975) K–Ar dating of quaternary and neogene volcanic rocks of the Snake River Plain, Idaho. Am J Sci 275:225–251

    Article  Google Scholar 

  • Armstrong RL, Taubnek WH, Hales PO (1977) Rb–Sr and K–Ar geochronometry of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington, and Idaho. Geol Soc Am Bull 88:397–411

    Article  Google Scholar 

  • Bachmann O, Dungan MA, Lipman PW (2002) The Fish Canyon Magma Body San Juan Volcanic Field, Colorado: rejuvenation and eruption of an upper crustal batholith. J Petrol 43(8):1469–1503

    Article  Google Scholar 

  • Bernt J, Bonnichsen B (1982) Pre-Cougar Point Tuff volcanic rocks near the Idaho–Nevada border, Owyhee County, Idaho. Idaho Bur Mines Geol Bull 26:321–330, In: Bonnichsen B, Breckenridge RM (eds), Cenozoic geology of Idaho

  • Bindeman IN, Valley JW (2001) Low-δ18O rhyolites from Yellowstone; magmatic evolution based on analyses of zircons and individual phenocrysts. J Petrol 42:1491–1517

    Article  Google Scholar 

  • Bindeman IN, Watts KE, Schmitt AK, Morgan LA, Shanks PWC (2007) Voluminous low δ 18O magmas in the late Miocene Heise Volcanic Field, Idaho: implications for the fate of Yellowstone hotspot calderas. Geology 35(11):1019–1022. doi:10.1130/G24141A.1

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49:163–193

    Article  Google Scholar 

  • Bonnichsen B (1982) The Bruneau–Jarbidge eruptive center; South-western Idaho. Idaho Bur Min Geol Bull 26:237–254, In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho

  • Bonnichsen B (1982b) Rhyolite lava flows in the Bruneau–Jarbidge Eruptive Centre, southwestern Idaho. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Mines Geol Bull 26:283–320

  • Bonnichsen B, Citron GP (1982) The Cougar Point Tuff, southwestern Idaho. Idaho Bur Mines Geol Bull 26:255–281, In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho

  • Bonnichsen B, Godchaux MM (2002) Late Miocene, Pliocene, and Pleistocene geology of southwestern Idaho with emphasis on basalts in the Bruneau–Jarbidge, Twin Falls, and western Snake River Plain regions. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:233–312

  • Bonnichsen B, Kauffman DF (1987) Physical features of rhyolite lava flows in the Snake River Plain volcanic province, Southwestern Idaho. Geol Soc Am 212:119–145, Special Paper

    Google Scholar 

  • Bonnichsen B, Leeman WP, Honjo N, McIntosh WC, Godchaux MM (2008) Miocene silicic volcanism in southwestern Idaho: geochronology, geochemistry, and evolution of the central Snake River Plain. Bull Volcanol 70:315–342. doi:10.1007/s00445-007-0141-6

    Article  Google Scholar 

  • Boroughs S, Wolff J, Bonnichsen B, Godchaux M, Larson P (2005) Large-volume, low-δ 18O rhyolites of the central Snake River Plain, Idaho, USA. Geology 33:821–824. doi:10.1130/G21723.1

    Article  Google Scholar 

  • Boroughs S, Wolff JA, Bonnichsen B, Ellis BS, Larson P (2012a) Evaluating models of the origin of Miocene low –δ 18O rhyolites of the Yellowstone/Columbia River large igneous province. Earth Plan Sci Lett 313–314:45–55

    Article  Google Scholar 

  • Boroughs S, Wolff JA, Starkel WA (2012b) A simple petrogenetic model for the formation of Miocene low-δ 18O rhyolites of the Yellowstone Hotspot track, USA. AGU Fall Meeting San Francisco DI51A-2342

  • Brand BD, White CM (2007) Origin and stratigraphy of phreatomagmatic deposits at the Pleistocene Sinker Butte Volcano, Western Snake River Plain, Idaho. J Volcanol Geotherm Res 160:319–339

    Article  Google Scholar 

  • Branney MJ, Barry TL, Godchaux M (2004) Sheathfolds in rheomorphic ignimbrites. Bull Volcanol 66:485–491

    Article  Google Scholar 

  • Branney MJ, Bonnichsen B, Andrews GDM, Ellis B, Barry TL, McCurry M (2008) ‘Snake River (SR) -type’ volcanism at the Yellowstone hotspot track: distinctive products from unusual, high-temperature silicic super-eruptions. Bull Volcanol 70:293–314. doi:10.1007/s00445-007-0140-7

    Article  Google Scholar 

  • Brueseke ME, Hart WK (2009) Intermediate composition magma production in an intracontinental setting: unusual andesites and dacites of the mid-Miocene Santa Rosa–Calico volcanic field, northern Nevada. J Volcanol Geotherm Res 188:197–213

    Article  Google Scholar 

  • Brueseke ME, Hart WK, Heizler MT (2008) Diverse mid-Miocene silicic volcanism associated with the Yellowstone–Newberry thermal anomaly. Bull Volcanol 70:343–360

    Article  Google Scholar 

  • Camp VE (1995) Mid-Miocene propagation of the Yellowstone mantle plume head beneath the Columbia River basalt source region. Geology 23:435–438

    Article  Google Scholar 

  • Camp VE, Hanan BB (2008) A plume-triggered delamination origin for the Columbia River basalt group. Geosph 4:480–495

    Article  Google Scholar 

  • Camp VE, Ross ME (2004) Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest. J Geophys Res 109, B08204. doi:10.1029/2003JB002838

    Article  Google Scholar 

  • Carlson RW, Hart WK (1988) Flood basalt volcanism in the northwestern United States. In: Macdougall JD (ed) Continental flood basalts. Kluwer Academic Publishers, Dordrecht, pp 35–62

    Chapter  Google Scholar 

  • Cathey HE, Nash BP (2004) The Cougar Point Tuff: implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J Petrol 45:27–58. doi:10.1093/petrology/egg081

    Article  Google Scholar 

  • Cathey HE, Nash BP (2009) Pyroxene thermometry of rhyolite lavas of the Bruneau–Jarbidge eruptive center, Central Snake River Plain. J Volcanol Geotherm Res 188(1-3):173–185

    Article  Google Scholar 

  • Cathey HE, Nash BP, Allen CM, Camphell IH, Valley JW, Kita N (2008) U–Pb zircon geochronology and Ti-in-zircon thermometry of large-volume low δ 18O magmas of the Miocene Yellowstone hotspot. Geochim Cosmochim Acta 72:A143

    Google Scholar 

  • Christiansen RL (2001) The Quaternary and Pliocene Yellowstone plateau volcanic field of Wyoming, Idaho, and Montana. U.S. Geol Sur Prof Paper 729-G, 145 p

  • Christiansen EH, McCurry M (2008) Contrasting origins of Cenozoic silicic volcanic rocks from the western Cordillera of the United States. Bull Volcanol 70:251–267

    Article  Google Scholar 

  • Christiansen RL, Foulger GR, Evans JR (2002) Upper mantle origin of the Yellowstone hotspot. Geol Soc Am Bull 114(10):1245–1256

    Article  Google Scholar 

  • Coble MA, Mahood GA (2012) Initial impingement of the Yellowstone plume located by widespread silicic volcanism contemporaneous with Columbia River flood basalts. Geology 40:655–658

    Article  Google Scholar 

  • Criss RJ, Taylor HP (1983) An 18O/16O and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho Batholith. Geol Soc Am Bull 94(5):640–663

    Article  Google Scholar 

  • Criss RJ, Ekren EB, Hardyman RF (1984) Casto ring zone; a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho. Geology 12:331–334

    Article  Google Scholar 

  • Crowley JL, Schoene B, Bowring SA (2007) U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35:1123–1126

    Article  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA, Harlou R, Hora JM (2007) Microsampling and isotopic analysis of igneous rocks: implications for the study of magmatic systems. Ann Rev Earth Plan Sci 35:273–311

    Article  Google Scholar 

  • Davis OK, Ellis B (2010) Early occurrence of sagebrush steppe, Miocene (12 Ma) on the Snake River Plain. Rev Palaeobot Palynol 160:172–180

    Article  Google Scholar 

  • Ellis B, Branney MJ (2010) Silicic phreatomagmatism in the Snake River Plain: the Deadeye Member. Bull Volcanol 72(10):1241–1257. doi:10.1007/s00445-010-0400-9

    Article  Google Scholar 

  • Ellis BS, Wolff JA (2012) Complex storage of rhyolite in the central Snake River Plain. J Volcanol Geotherm Res 211–212:1–11

    Article  Google Scholar 

  • Ellis BS, Barry TL, Branney MJ, Wolff JA, Bindeman I, Wilson R, Bonnichsen B (2010) Petrologic constraints on the development of a large-volume, high temperature, silicic magma system: the Twin Falls eruptive centre, central Snake River Plain. Lithos 120:475–489. doi:10.1016/j.lithos.2010.09.008

    Article  Google Scholar 

  • Ellis BS, Branney MJ, Barry TL, Barfod D, Bindeman I, Wolff JA, Bonnichsen B (2012a) Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bull Volcanol 74:261–277

    Article  Google Scholar 

  • Ellis BS, Mark DF, Pritchard CJ, Wolff JA (2012b) Temporal dissection of the Huckleberry Ridge Tuff using the 40Ar/39Ar dating technique. Qua Geochron 9:34–41

    Article  Google Scholar 

  • Fleck RJ, Criss RE (1985) Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho. Contrib Mineral Petrol 90:291–308

    Article  Google Scholar 

  • Fleck RJ, Criss RE (2004) Location, age, and tectonic significance of the Western Idaho Suture Zone (WISZ). Open-File Report—US Geol Surv

  • Gaschnig RM, Vervoort JD, Lewis RS, Tikoff B (2011) Isotopic evolution of the Idaho batholith and challis intrusive province, Northern US Cordillera. J Petrol 52:2397–2429. doi:10.1093/petrology/egr050

    Article  Google Scholar 

  • Geist D, Richards MA (1993) Origin of the Columbia plateau and the Snake River Plain: deflection of the Yellowstone plume. Geology 21:789–792

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Plan Sci Lett 271:123–134

    Article  Google Scholar 

  • Godchaux MM, Bonnichsen B (2002) Syneruptive magma-water and posteruptive lava–water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: Bonnichsen B, White CM, McCurry M (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:387–434

  • Godchaux MM, Bonnichsen B, Jenks MD (1992) Types of phreatomagmatic volcanoes in the western Snake River Plain, Idaho, USA. J Volcanol Geotherm Res 52(1–3):1–25

    Article  Google Scholar 

  • Hales TC, Abt DL, Humphreys ED, Roering JJ (2005) Delamination origin for the Columbia River flood basalts and Wallowa Mountain uplift in NE Oregon, U.S.A. Nature 438(8):842–845. doi:10.1038/nature04313

  • Henry CD, Wolff JA (1992) Distinguishing strongly rheomorphic tuffs from extensive silicic lavas. Bull Volcanol 54:171–186

    Google Scholar 

  • Henry CD, Castor SB, McIntosh WC, Heizler MT, Cuney M, Chemillac R (2006) Timing of oldest Steens basalt magmatism from precise dating of silicic volcanic rocks, McDermitt caldera and northwest Nevada Volcanic Field. Eos Transactions AGU 87 (52)

  • Hildreth W (1979) The BishopTuff: evidence for the origin of compositional zonation in silicic magma chambers. In: Chapin CE, Elston WE (eds) Ash-flow tuffs. Geol Soc Am, Special Paper 180, 43-75

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Article  Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48(5):951–999

    Article  Google Scholar 

  • Hill M, Schmitz MD (2011) Processes of magma evolution and crystal recycling recorded in zircon populations of large volume rhyolites in the western Mount Bennett Hills, Central Snake River Plain, Idaho, and the implications for constraining the pre- and syn- eruptive evolution of silicic magmas. Geol Soc Am Abstr Prog 43(4):64

    Google Scholar 

  • Honjo N, Leeman WP (1987) Origin of hybrid ferrolatite lavas from the Magic Reservoir eruptive centre, Snake River Plain, Idaho. Contrib Mineral Petrol 96:163–173

    Article  Google Scholar 

  • Honjo N, Bonnichsen B, Leeman WP, Stormer JC (1992) Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain. Bull Volcanol 54:220–237

    Google Scholar 

  • Hooper PR, Binger GB, Lees KR (2002) Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon. Geol Soc Am Bull 114:43–50

    Article  Google Scholar 

  • Hooper PR, Camp VE, Reidel SP, Ross ME (2007) The origin of the Columbia River Flood Basalt province: plume versus non-plume models. In: Foulger, G. and Jurdy (eds) Plates, plumes and planetary processes. Geol Soc Am Spec Pap 430:635-668

  • Hughes SS, McCurry M (2002) Bulk major and trace element evidence for a time-space evolution of Snake river Plain rhyolites, Idaho. In: Bonnichsen B, White CM, McCurryM (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province, vol. 30. Idaho Geological Survey Bulletin, pp. 161–176

  • James DE, Fouch MJ, Carlson RW, Roth JB (2011) Slab fragmentation, edge flow and the origin of the Yellowstone hotspot track. Earth Plan Sci Lett 311:124–135

    Article  Google Scholar 

  • Jarboe NA, Coe RS, Renne PR, Glen JM, Maniken EA (2008) Quickly erupted volcanic sections of the Steens Basalt, Columbia River Basalt Group: Secular variation, tectonic rotation, and the Steens Mountain reversal. Geochem Geophys Geosyst 9, Q11010. doi:10.1029/2008GC002067

    Article  Google Scholar 

  • Jarboe NA, Coe RS, Renne PR, Glen JM (2010) The age of the Steens reversal and the Columbia River Basalt Group. Chem Geol 274:158–168

    Article  Google Scholar 

  • Jenks MD, Bonnichsen B (1989) Subaqueous basalt eruptions into Pliocene Lake Idaho, Snake River Plain, Idaho. In: Chamberlain VE, Breckenridge RM, Bonnichsen B (eds) Guidebook to the geology of Northern and Western Idaho and surrounding area. Idaho Geol Surv Bull 28:17–34

  • Jordan BT, Grunder AL, Duncan RA, Deino AL (2004) Geochronology of age-progressive volcanism of the Oregon High Plains: implications for the plume interpretation of Yellowstone. J Geophys Res 109:B10202–B10221

    Article  Google Scholar 

  • Kellogg KS, Harlan SS, Mehnert HH, Snee LW, Pierce KL, Hackett WR, Rogers DW (1994) Major 10.2 Ma rhyolitic volcanism in the eastern Snake River Plain, Idaho—isotopic age and stratigraphic setting of the Arbon Valley Tuff member of the starlight formation. US Geol Surv Bull 2091:18

    Google Scholar 

  • Kiilsgaard TH, Lewis RS, Bennett EH (2001) Plutonic and hypabyssal rocks of the Hailey 1° × 2° Quadrangle, Idaho. US Geol Surv Bull 2064-U

  • Knesel KM, Davidson JP, Duffield WA (1999) Evolution of silicic magma through assimilation and subsequent recharge: evidence from Sr isotopes in sanidine phenocrysts, Taylor Creek Rhyolite, NM. J Petrol 40:773–786. doi:10.1093/petrology/40.5.773

    Article  Google Scholar 

  • Konstantinou A, Strickland A, Miller EL, Wooden JW (2012) Multi-stage Cenozoic extension of the Albion-Raft River–Grouse Creek metamorphic core complex: geochronologic and stratigraphicconstraints. Geosphere 8:1429–1466

    Article  Google Scholar 

  • Lavallée Y, de Silva SL, Salas G, Byrnes JM (2006) Explosive volcanism (VEI 6) without caldera formation: insight from Huaynaputina volcano, southern Peru. Bull Volcanol 68:333–348

    Article  Google Scholar 

  • Leeman WP (1982) Geology of the Magic Reservoir area, Snake River Plain. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bur Mines Geol Bull 26:369–376

  • Leeman WP, Menzies MA, Matty DJ, Embree GF (1985) Strontium, neodymium and lead isotopic compositions of deep crustal xenoliths from the Snake River plain: evidence for Archean basement. Earth Planet Sci Lett 75:354–368

    Article  Google Scholar 

  • Leeman WP, Annen C, Dufek J (2008) Snake River Plain–Yellowstone silicic volcanism: implications for magma genesis and magma fluxes. Geol Soc Lond Spec Publ 304:235–259. doi:10.1144/SP304.12

    Article  Google Scholar 

  • Leeman WP, Schutt DL, Hughes SS (2009) Thermal structure beneath the Snake River Plain: implications for the Yellowstone hotspot. J Volcanol Geotherm Res 188(1–3):57–67. doi:10.1016/j.jvolgeores.2009.01.034

    Article  Google Scholar 

  • Lipman PW (1976) Caldera collapse breccias in the western San Juan Mountains, Colorado. Geol Soc Am Bull 87:1397–1410

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas: relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Liu L, Stegman DR (2012) Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature 482:386–389. doi:10.1038/nature10749

    Article  Google Scholar 

  • Long MD, Till CB, Druken KA, Carlson RW, Wagner LS, Fouch MJ, James DE, Grove TL, Schmerr N, Kincaid C (2012) Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism. Geochem Geophys Geosyst 13:Q0AN01. doi:10.1029/2012GC004189

    Article  Google Scholar 

  • Lowenstern JB, Hurwitz SH (2008) Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone caldera. Elements 4:35–40

    Article  Google Scholar 

  • Malde HE, Powers HA (1962) Upper Cenozoic stratigraphy of western Snake River Plain, Idaho. Geol Soc Am Bull 73:1197–1220

    Article  Google Scholar 

  • Manea VC, Manea M, Leeman WP, Schutt DL (2009) The influence of plume head–lithosphere interaction on magmatism associated with the Yellowstone hotspot track. J Volcanol Geotherm Res 188(1–3):68–85. doi:10.1016/j.jvolgeores.2008.12.012

    Article  Google Scholar 

  • McCurry M, Rodgers DW (2009) Mass transfer along the Yellowstone hotspot track I: petrologic constraints on the volume of mantle-derived magma. J Volcanol Geotherm Res 188:86–98

    Article  Google Scholar 

  • McDonough WC, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  Google Scholar 

  • Morgan LA, McIntosh WC (2005) Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA. Geol Soc Am Bull 117:288–306. doi:10.1130/B25519.1

    Article  Google Scholar 

  • Nash BP, Perkins ME (2012) Neogene fallout tuffs from the Yellowstone hotspot in the Columbia plateau region, Oregon, Washington and Idaho, USA. PLoS One 7(10):e44205

    Article  Google Scholar 

  • Nash BP, Perkins ME, Christensen JN, Lee DC, Halliday AN (2006) The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas. Earth Plan Sci Lett 247:143–156

    Article  Google Scholar 

  • Obrebski M, Allen RM, Xue M, Hung S (2010) Slab–plume interaction beneath the Pacific Northwest. Geophys Res Lett 37, L14305. doi:10.1029/2010GL043489

    Article  Google Scholar 

  • Perkins ME, Nash BP (2002) Explosive silicic volcanism of the Yellowstone hotspot: the ash fall tuff record. Geol Soc Am Bull 114:367–381

    Article  Google Scholar 

  • Perkins ME, Nash WP, Brown FH, Fleck RJ (1995) Fallout tuffs of Trapper Creek Idaho—a record of Miocene explosive volcanism in the Snake River Plain volcanic province. Geol Soc Am Bull 107:1484–1506

    Article  Google Scholar 

  • Perkins ME, Williams SK, Brown FH, Nash WP, McIntosh W (1998) Sequence, age, and source of silicic fallout tuffs in middle to late Miocene basins of the northern Basin and Range Province. Geol Soc Am Bull 110:344–360

    Article  Google Scholar 

  • Perry FV, DePaolo DJ, Baldridge WS (1993) Neodymium isotopic evidence for decreasing crustal contributions to Cenozoic ignimbrites of the western United States: implications for the thermal evolution of the Cordilleran crust. Geol Soc Am Bull 105:872–882

    Article  Google Scholar 

  • Pierce KL, Morgan LA (1992) The track of the Yellowstone hotspot: volcanism, faulting and uplift. In: Link PK, Kuntz MA, Platt LB (eds) Regional geology of eastern Idaho and western Wyoming. Geol Soc Am Mem 179:1–53

  • Ramos FC, Wolff JA, Tollstrup DL (2005) Sr isotope disequilibrium in Columbia River flood basalts: evidence for rapid, shallow-level, open-system processes. Geology 33:457–460

    Article  Google Scholar 

  • Reidel SP, Camp VE, Tolan TL, Martin BS (2013) The Columbia River flood basalt province: stratigraphy, areal extent, volume, and physical volcanology. In: Reidel SP, Camp VE, Ross ME, Wolff JA, Martin BS, Tolan TL, Wells RE (eds) The Columbia River flood basalt province: geological society of America special paper 497, pp 1–43. doi:10.1130/2013.2497(01)

  • Rodgers DW, McCurry M (2009) Mass transfer along the Yellowstone hotspot track II: kinematic constraints on the volume of mantle-derived magma. J Volcanol Geotherm Res 188(1–3):99–107

    Article  Google Scholar 

  • Rose WI, Riley CM, Darteville S (2003) Sizes and shapes of 10 Ma distal fall pyroclasts in the Ogallala Group, Nebraska. J Geol 111:115–124

    Article  Google Scholar 

  • Schmandt B, Dueker K, Humphreys E, Hansen S (2012) Hot mantle upwelling across the 660 beneath Yellowstone. Earth Plan Sci Lett 331–332:224–236

    Article  Google Scholar 

  • Schutt DL, Dueker K, Yuan H (2008) Crust and upper mantle velocity structure of the Yellowstone hot spot and surroundings. J Geophys Res 113, B03310. doi:10.1029/2007JB005109

    Article  Google Scholar 

  • Shervais JW, Hanan BB (2008) Lithospheric topography, tilted plumes, and the track of the Snake River–Yellowstone hot spot. Tectonics 27:TC5004

    Article  Google Scholar 

  • Smith RL (1979) Ash-flow magmatism. In: Chapin CE, & Elston WE (eds) Ash-flow tuffs. Geological Society of America Special Paper 180, 5-28

  • Smith AD (1992) Back-arc convection model for Columbia River basalt genesis. Tectonophysics 207:269–285

    Article  Google Scholar 

  • Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galan caldera, NW Argentina. J Volcanol Geotherm Res 24:205–248

    Article  Google Scholar 

  • Swanson DA, Wright TL, Hooper PR, Bentley RD, (1979) Revisions in stratigraphic nomenclature of the Columbia River Basalt Group. US Geol Surv Bull1457-G, 59 p

  • Swisher CC, Ach JA, Hart WK (1990) Laser fusion 40Ar/39Ar dating of the type Steens Mountain Basalt, southeastern Oregon and the age of the Steens geomagnetic polarity transition. Eos (Transactions, American Geophysical Union), v. 71, Fall Meeting Supplement, p. 1296

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1–71

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Science, Oxford

    Google Scholar 

  • Wagner LS, Forsyth DW, Fouch MJ, James DE (2010) Detailed three-dimensional shear wave velocity structure of the northwestern United States from Rayleigh wave tomography. Earth Plan Sci Lett 299:273–284. doi:10.1016/j.epsl.2010.09.005

    Article  Google Scholar 

  • Watts KE, Leeman WP, Bindeman IN, Larson PB (2010) Supereruptions of the Snake River Plain: two-stage derivation of low-18O rhyolites from normal-18O crust as constrained by Archean xenoliths. Geology 38:503–506

    Article  Google Scholar 

  • Watts KE, Bindeman IN, Schmitt A (2011) Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: insights from the Kilgore Tuff of the Heise volcanic field, Idaho, with comparison to Yellowstone and Bruneau–Jarbidge rhyolites. J Petrol 52:857–890

    Article  Google Scholar 

  • Williams PL, Mytton JW, Covington HR, (1999) Geologic map of the Stricker 1 quadrangle, Cassia, Twin Falls, and Jerome Counties, Idaho. US Geol Surv Misc Inv Series Map I-2078 1:48,000

  • Wilson CJN, Blake S, Charlier BLA, Sutton AN (2006) The 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand: development, characteristics and evacuation of a large rhyolitic magma body. J Petrol 47(1):35–69

    Article  Google Scholar 

  • Wolff JA, Ramos FC, Hart GL, Patterson JD, Brandon AD (2008) Columbia River flood basalts from a centralized crustal magmatic system. Nat Geosci 1:177–180. doi:10.1038/ngeo124

    Article  Google Scholar 

  • Wolff JA, Ellis BS, Ramos FC (2011) Strontium isotopes and magma dynamics: insights from high-temperature rhyolites. Geology 39:931–934

    Article  Google Scholar 

  • Wright KE, McCurry M, Hughes SS (2002) Petrology and geochemistry of the Miocene tuff of McMullen Creek, central Snake River Plain. In: Bonnichsen B, McCurry M, White CM (eds) Tectonic and magmatic evolution of the Snake River Plain volcanic province. Idaho Geol Surv Bull 30:177–194

  • Yuan H, Dueker K (2005) P wave tomogram of the Yellowstone plume. Geophys Res Lett 32, L07304. doi:10.1029/2004GL022056

    Article  Google Scholar 

Download references

Acknowledgments

Snake River Plain research at Washington State University has been generously funded by NSF (EAR0610081 and EAR0911457), and in the UK funding from NERC (NER/S/A/2004/12340) is gratefully acknowledged. Our work in the SRP has benefitted greatly from a discussion with numerous collaborators including Bill Leeman, Mike Branney, Graham Andrews, Ilya Bindeman, Mike McCurry, Barbara Nash, Henny Cathey, John Kauffman, Eric Christiansen, Matt Brueseke, and Marty Godchaux, although they may not agree with all (or indeed any) of our conclusions. We would like to thank the Bulletin of Volcanology for the invitation to submit this paper and the editorial assistance (and patience) from Steve Self. Graham Andrews and Henny Cathey were kind enough to provide informal reviews, and Matt Brueseke and Barbara Nash are thanked for their careful journal reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Ellis.

Additional information

Editorial responsibility: S. Self

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, B.S., Wolff, J.A., Boroughs, S. et al. Rhyolitic volcanism of the central Snake River Plain: a review. Bull Volcanol 75, 745 (2013). https://doi.org/10.1007/s00445-013-0745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0745-y

Keywords

Navigation