Bulletin of Volcanology

, Volume 70, Issue 9, pp 1087–1101 | Cite as

Vent area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (Campi Flegrei, Italy): new insights from directional fabric through image analysis

  • Laura ValentiniEmail author
  • Bruno Capaccioni
  • Piermaria Luigi Rossi
  • Roberto Scandone
  • Damiano Sarocchi
Research Article


In order to provide new information about the source area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (NYT), a prominent pyroclastic deposit of the Campi Flegrei Volcanic District (southern Italy), statistics on directional fabric, by means of computer-assisted image analysis on 32 rock samples, were compiled. Seventeen samples were collected along vertical direction on two selected exposures and fifteen were taken from outcrops widely distributed all around the Campi Flegrei Volcanic District. Fabric measurements within the investigated successions reveal a vertically homogeneous direction of the mean particle iso-orientation, with considerable variability in the strength of particle iso-orientation even at cm-scale. The existence of particle iso-orientation can be related to continuous sedimentation from a concentrated bedload region beneath suspension currents, producing massive or inversely graded beds by traction carpet sedimentation. The considerable vertical variability in the strength of iso-orientation is the result of very unstable flow regimes, up to the extreme condition of discrete depositional events, with a variable combination of traction carpet and/or direct suspension sedimentation. The vertical homogeneity in the mean orientation values, found in the investigated sections, may derive from the sequential deposition of laminae to thin beds, whose relatively flat upper surfaces were unable to significantly deflect the depositional system of the following currents. According to the observed homogeneous mean particle orientation values along the investigated vertical profiles, samples collected through areal distribution are considered representative of the local paleo-flow directions of the whole deposit. The mean directions of the samples collected areally show two different coherent patterns which point to the existence of two different source areas. The first, which includes all samples from the northern outcrops, appears to converge in a narrow area about 2 km NE of the town of Pozzuoli, largely in coincidence with the inferred area on the basis of the pumice fall distribution. The second, which includes samples from Capo Miseno and Posillipo areas, points to the central part of the Pozzuoli Bay, about 4 km offshore the town of Pozzuoli.


Neapolitan Yellow Tuff Campi Flegrei Pyroclastic Density Currents Textural investigation Image analysis Pattern of fabric Depositional mechanism 



We wish to thank W. Cavazza, R. Cioni, C. Scarpati and J.C. Varekamp for reviewing the manuscript and making helpful comments and suggestions.


  1. Agip (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei. Servizi Centrali per l’Esplorazione. SERG-MMESG, San DonatoGoogle Scholar
  2. Alessio M, Bella F, Belluomini G, Calderoni G, Cortese C, Fornaseri M, Franco M, Improta F, Scherillo A, Turi B (1971) Datazioni con il metodo del C-14 di carboni e livelli humificati (paleosuoli) intercalati nelle formazioni piroclastiche dei Campi Flegrei (Napoli). Rend Soc Ital Mineral Petrol 27:305–317Google Scholar
  3. Alessio M, Bella F, Improta F, Belluomini G, Cortese C, Turi B (1973) University of Rome C-14 dates IX. Radiocarbon 13:395–411Google Scholar
  4. Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41:10–22CrossRefGoogle Scholar
  5. Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49CrossRefGoogle Scholar
  6. Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520CrossRefGoogle Scholar
  7. Branney MJ, Kokelaar P (1997) Giant bed from a sustained catastrophic density current flowing over topography: Acatlàn ignimbrite, Mexico. Geology 25:115–118CrossRefGoogle Scholar
  8. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–152Google Scholar
  9. Breislak S (1801) Voyage physiques et litologiques dans la Campanie. Dentu, Imprimeur-Libraire, ParisGoogle Scholar
  10. Brown RJ, Branney MJ (2004) Bypassing and diachronous deposition from density currents: Evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–448CrossRefGoogle Scholar
  11. Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes. I. Theory and its comparison with the study of Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344CrossRefGoogle Scholar
  12. Bursik MI, Kurbatov AV, Sheridan MF, Woods AW (1998) Transport and deposition in the May 18, 1980, Mount St Helens blast flow. Geology 26:155–158CrossRefGoogle Scholar
  13. Cagnoli B, Tarling DH (1997) The reliability of magnetic susceptibility (AMS) data as flow direction indicators in friable base surges and ignimbrite deposits: Italian examples. J Volcanol Geotherm Res 75:309–320CrossRefGoogle Scholar
  14. Capaccioni B, Sarocchi D (1996) Computer-assisted image analysis on clast shape fabric from the Orvieto–Bagnoregio Ignimbrite (Vulsini District, Central Italy): implications on the emplacement mechanisms. J Volcanol Geotherm Res 70:75–90CrossRefGoogle Scholar
  15. Capaccioni B, Valentini L, Rocchi MBL, Nappi G, Sarocchi D (1997) Image analysis and circular statistics for shape fabric analysis: applications to lithified ignimbrites. Bull Volcanol 58:501–514CrossRefGoogle Scholar
  16. Capaccioni B, Nappi G, Valentini L (2001) Directional fabric measurements: an investigative approach to transport and depositional mechanisms in pyroclastic flows. J Volcanol Geotherm Res 107:275–292CrossRefGoogle Scholar
  17. Capaldi G, Civetta L, Di Girolamo P, Zanzara R, Orsi G, Scarpati C (1987) Volcanological and geochemical constraints on the genesis of the deposits of Yellow Tuff in the Neapolitan–Phlegrean area. Rend Accad Sci Fis Mat, Spec Issue 25–40Google Scholar
  18. Cole PD, Scarpati C (1993) A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, southern Italy. Bull Volcanol 55:311–326CrossRefGoogle Scholar
  19. De Lorenzo G (1904) L’attività vulcanica nei Campi Flegrei. Rend Accad Sci Fis Mat 10:204–221Google Scholar
  20. De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modelling of the 1982–1984 unrest phenomena at Campi Flegrei caldera (southern Italy). J Volcanol Geotherm Res 48:199–222CrossRefGoogle Scholar
  21. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301CrossRefGoogle Scholar
  22. de’ Gennaro M, Incoronato A, Mastrolorenzo G, Adabbo M, Spina G (1999) Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy). J Volcanol Geotherm Res 91:303–320CrossRefGoogle Scholar
  23. de’ Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139:17–35CrossRefGoogle Scholar
  24. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera Italy) assessed by Ar-41/Ar-39 dating method. J Volcanol Geotherm Res 133(1–4):137–170Google Scholar
  25. Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. Boll Soc Geol Ital 103:349–413Google Scholar
  26. Druitt TH (1992) Emplacement of 18 May 1980, lateral blast ENE of Mount St Helens, Washington. Bull Volcanol 54:554–572CrossRefGoogle Scholar
  27. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Special publication. vol. 145. Geological Society of London, London, pp 145–182Google Scholar
  28. Ellwood BB (1982) Estimates of flow direction from calkalcaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet Sci Lett 59:303–314CrossRefGoogle Scholar
  29. Elston WE, Smith EI (1970) Determination of flow direction of ryolitic ash-flow tuffs from fluidal textures. Geol Soc Am Bull 81:3393–3406CrossRefGoogle Scholar
  30. Fedi M, Nunziata C, Rapolla A (1991) The Campania–Campi Flegrei area: a contribution to discern the best structural model from gravity interpretation. J Volcanol Geotherm Res 48:51–59CrossRefGoogle Scholar
  31. Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St Helens, Washington. Geol Soc Am Bull 102:1038–1054CrossRefGoogle Scholar
  32. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow: emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220CrossRefGoogle Scholar
  33. Florio G, Fedi M, Cella F, Rapolla A (1999) The Campanian Plain and Phlegrean Fields: structural setting from potential field data. J Volcanol Geotherm Res 91:361–379CrossRefGoogle Scholar
  34. Gumbel EJ, Greenwood JA, Durand D (1953) The circular normal distribution: theory and tables. J Am Stat Assoc 48:131–152CrossRefGoogle Scholar
  35. Hillhouse JW, Wells RE (1991) Magnetic fabric, flow directions and source area of the Lower Miocene Peach Springs tuff in Arizona, California, and Nevada. J Geophys Res 96:12443–12460CrossRefGoogle Scholar
  36. Hughes SR, Druitt TH (1998) Particle fabric in a small, type-2 ignimbrite flow unit (Laacher See, Germany) and implications for emplacement dynamics. Bull Volcanol 60:125–136CrossRefGoogle Scholar
  37. Insinga D, Calvert A, D’Argenio B, Fedele L, Lanphere M, Morra V, Perrotta A, Sacchi M, Scarpati C (2004) 40Ar/39Ar dating of the Neapolitan Yellow Tuff eruption (Campi Flegrei, southern Italy): volcanological and chronostratigraphic implications. EGU Assembly, NiceGoogle Scholar
  38. Kamata H, Mimura K (1983) Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan. Bull Volcanol 46:277–282CrossRefGoogle Scholar
  39. Kneller BC, Branney MJ (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607–616CrossRefGoogle Scholar
  40. Kuiper NH (1960) Tests concerning random points on a circle. Koningkl Nederl Akad Wet Proc Ser A 63:38–47Google Scholar
  41. Lardini D, Nappi G (1987) I cicli eruttivi del Complesso Vulcanico Cimino. Rend Soc Ital Mineral Petrol 42:141–153Google Scholar
  42. La Torre P, Nannini R (1980) Geothermal well location in southern Italy: the contribution of geophysical methods. Boll Geofis Teor Appl 87:201–209Google Scholar
  43. Le Pennec JL, Chen Y, Diot H, Froger JL, Gourgaud A (1998) Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study. Earth Planet Sci Lett 157:105–127CrossRefGoogle Scholar
  44. Lirer L, Munno R (1975) Il tufo giallo napoletano (Campi Flegrei). Period Mineral 44:103–118Google Scholar
  45. Lirer L, Luongo G, Scandone R (1987) On the volcanological evolution of Campi Flegrei. EOS 68(16):226–233Google Scholar
  46. Locardi E (1965) Tipi di ignimbriti di magmi mediterranei: le ignimbriti del vulcano di Vico. Atti Soc Toscana Sci Nat 72A:55–173Google Scholar
  47. Lowe DR (1982) Sediment gravity flows. II. Depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Petrol 52:279–297Google Scholar
  48. Lowe DR (1988) Suspended-load fall-out rate as an independent variable in the analysis of current structures. Sedimentology 35:765–776CrossRefGoogle Scholar
  49. MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier tuff), Valles caldera, New Mexico, USA. Bull Volcanol 53:45–49CrossRefGoogle Scholar
  50. Nappi G, Capaccioni B, Renzulli A, Santi P, Valentini L (1994) Stratigraphy of the Orvieto–Bagnoregio Ignimbrite eruption (Eastern Vulsini District, Central Italy). Mem Descr Carta Geol Ital 49:241–254Google Scholar
  51. Nunziata C, Rapolla A (1981) Interpretation of gravity and magnetic data in the Phlegrean Fields geothermal area, Naples, Italy. J Volcanol Geotherm Res 10:209–226CrossRefGoogle Scholar
  52. Orsi G, Scarpati C (1989) Stratigrafia e dinamica eruttiva del Tufo Giallo Napoletano. Boll GNV 2:917–930Google Scholar
  53. Orsi G, Civetta L, Aprile A, D’Antonio M, de Vita S, Gallo G, Piochi M (1991) The Neapolitan Yellow Tuff: eruptive dynamics, emplacement mechanism and magma evolution of a phreatoplinian-to-plinian. In: Orsi G, Rosi M (eds) Large ignimbrite eruptions of the Phlegrean Fields caldera: The Neapolitan Yellow Tuff and the Campanian Ignimbrite. Workshop on Explosive Volcanism, Napoli, 1–8 September 1991, guidebookGoogle Scholar
  54. Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large magnitudo trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287CrossRefGoogle Scholar
  55. Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214CrossRefGoogle Scholar
  56. Parascandola A (1936) I vulcani occidentali di Napoli. Boll Soc Nat 48:39–58Google Scholar
  57. Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo B (ed) Volcanism in the Campanian Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in volcanology. vol. 9. Elsevier, Amsterdam, pp 85–96CrossRefGoogle Scholar
  58. Postma G, Nemec W, Kleinspehn K (1988) Large floating clasts in turbidites: a mechanisms for their emplacement. Sed Geol 58:47–61CrossRefGoogle Scholar
  59. Potter DB, Oberthal CM (1987) Vent sites and flow directions of the Otowi ash flows (lower Bandelier Tuff) New Mexico. Geol Soc Am Bull 98:66–76CrossRefGoogle Scholar
  60. Rees AI (1968) The production of preferred orientation in a concentrated dispersion of elongated and flattened grains. J Geol 76:457–465Google Scholar
  61. Rees AI (1979) The orientation of grains in a sheared dispersion. Tectonophysics 55:275–287CrossRefGoogle Scholar
  62. Rees AI (1983) Experiments on the production of transverse grain alignment in a sheared dispersion. Sedimentology 30:437–448CrossRefGoogle Scholar
  63. Rittmann A (1950) Sintesi Geologica dei Campi Flegrei. Boll Soc Geol It LXIX-II:117–128Google Scholar
  64. Rittmann A, Vighi L, Falini F, Ventriglia V, Nicotera P (1950) Rilevamento geologico nei Campi Flegrei. Boll Soc Geol Ital 69:117–362Google Scholar
  65. Rosi M, Sbrana A (1987) The Phlegrean Fields. CNR, Quaderni de “La Ricerca Scientifica”, 114, p 175Google Scholar
  66. Rosi M, Sbrana A, Principe C (1983) The Phlegrean Fields: structural evolution, volcanic history and eruptive mechanism. J Volcanol Geotherm Res 17:273–288CrossRefGoogle Scholar
  67. Rusnak GA (1957) The orientation of sand grains under conditions of unidirectional flow. J Geol 65:384–409CrossRefGoogle Scholar
  68. Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian plain and the activity of the Neapolitan volcanoes (Italy). J Volcanol Geotherm Res 48:1–31CrossRefGoogle Scholar
  69. Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55:343–356CrossRefGoogle Scholar
  70. Scherrillo A, Franco E (1967) Introduzione alla carta stratigrafica del suolo di Napoli. Atti Accad Pontaniana 16:27–37Google Scholar
  71. Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188CrossRefGoogle Scholar
  72. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  73. Sparks RSJ, Carey S, Sigurdsson H (1991) Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38:839–856CrossRefGoogle Scholar
  74. Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54:685–695CrossRefGoogle Scholar
  75. Suzuki K, Ui T (1982) Grain orientation and depositional ramps as flow direction indicators of a large-scale pyroclastic flow deposit in Japan. Geology 10:429–432CrossRefGoogle Scholar
  76. Ui T, Suzuki-Kamata K, Matsusue R, Fujiita K, Metsugi H, Araki M (1989) Flow behaviour of large-scale pyroclastic flows: evidence derived from petrofabric analysis. Bull Volcanol 51:115–122CrossRefGoogle Scholar
  77. Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49:616–630CrossRefGoogle Scholar
  78. Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sirgudsson H, Houghton B, Memors S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, pp 571–580Google Scholar
  79. Valentini L (2002) Analisi del fabric direzionale di depositi piroclastici da flusso in elaborazione di immagine: meccanismi di trasporto e deposizione. Ph.D. thesis, University of Bologna, ItalyGoogle Scholar
  80. Valentini L (2003) Directional fabric measurements in image analysis on pyroclastic flow deposits: transport and depositional mechanisms. Plinius 29:91–96Google Scholar
  81. Walker GPL (1981) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–92CrossRefGoogle Scholar
  82. Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88CrossRefGoogle Scholar
  83. Wilson CJN, Houghton BF (2000) Pyroclastic transport and deposition. In: Sirgudsson H, Houghton B, Memors S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, pp 545–554Google Scholar
  84. Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc Lond 139:581–592CrossRefGoogle Scholar
  85. Wohletz K, Orsi G, De Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data. J Volcanol Geotherm Res 67:263–290CrossRefGoogle Scholar
  86. Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, De Franco R, Makris J, Michelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys Res Lett 30(19):2002 DOI  10.1029/2003/GLO18173 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laura Valentini
    • 1
    Email author
  • Bruno Capaccioni
    • 2
  • Piermaria Luigi Rossi
    • 2
  • Roberto Scandone
    • 3
  • Damiano Sarocchi
    • 4
  1. 1.Institute of Earth Sciences, Campus ScientificoUniversity of UrbinoUrbino (PU)Italy
  2. 2.Department of Earth and Environmental–Geological SciencesUniversity of BolognaBologna (BO)Italy
  3. 3.Department of PhysicUniversity “Roma Tre”RomeItaly
  4. 4.Institute of GeologyUNAMCoyoacánMéxico

Personalised recommendations