Skip to main content
Log in

Vent area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (Campi Flegrei, Italy): new insights from directional fabric through image analysis

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

In order to provide new information about the source area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (NYT), a prominent pyroclastic deposit of the Campi Flegrei Volcanic District (southern Italy), statistics on directional fabric, by means of computer-assisted image analysis on 32 rock samples, were compiled. Seventeen samples were collected along vertical direction on two selected exposures and fifteen were taken from outcrops widely distributed all around the Campi Flegrei Volcanic District. Fabric measurements within the investigated successions reveal a vertically homogeneous direction of the mean particle iso-orientation, with considerable variability in the strength of particle iso-orientation even at cm-scale. The existence of particle iso-orientation can be related to continuous sedimentation from a concentrated bedload region beneath suspension currents, producing massive or inversely graded beds by traction carpet sedimentation. The considerable vertical variability in the strength of iso-orientation is the result of very unstable flow regimes, up to the extreme condition of discrete depositional events, with a variable combination of traction carpet and/or direct suspension sedimentation. The vertical homogeneity in the mean orientation values, found in the investigated sections, may derive from the sequential deposition of laminae to thin beds, whose relatively flat upper surfaces were unable to significantly deflect the depositional system of the following currents. According to the observed homogeneous mean particle orientation values along the investigated vertical profiles, samples collected through areal distribution are considered representative of the local paleo-flow directions of the whole deposit. The mean directions of the samples collected areally show two different coherent patterns which point to the existence of two different source areas. The first, which includes all samples from the northern outcrops, appears to converge in a narrow area about 2 km NE of the town of Pozzuoli, largely in coincidence with the inferred area on the basis of the pumice fall distribution. The second, which includes samples from Capo Miseno and Posillipo areas, points to the central part of the Pozzuoli Bay, about 4 km offshore the town of Pozzuoli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agip (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei. Servizi Centrali per l’Esplorazione. SERG-MMESG, San Donato

    Google Scholar 

  • Alessio M, Bella F, Belluomini G, Calderoni G, Cortese C, Fornaseri M, Franco M, Improta F, Scherillo A, Turi B (1971) Datazioni con il metodo del C-14 di carboni e livelli humificati (paleosuoli) intercalati nelle formazioni piroclastiche dei Campi Flegrei (Napoli). Rend Soc Ital Mineral Petrol 27:305–317

    Google Scholar 

  • Alessio M, Bella F, Improta F, Belluomini G, Cortese C, Turi B (1973) University of Rome C-14 dates IX. Radiocarbon 13:395–411

    Google Scholar 

  • Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41:10–22

    Article  Google Scholar 

  • Barberi F, Cassano E, La Torre P, Sbrana A (1991) Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J Volcanol Geotherm Res 48:33–49

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull Volcanol 54:504–520

    Article  Google Scholar 

  • Branney MJ, Kokelaar P (1997) Giant bed from a sustained catastrophic density current flowing over topography: Acatlàn ignimbrite, Mexico. Geology 25:115–118

    Article  Google Scholar 

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–152

    Google Scholar 

  • Breislak S (1801) Voyage physiques et litologiques dans la Campanie. Dentu, Imprimeur-Libraire, Paris

    Google Scholar 

  • Brown RJ, Branney MJ (2004) Bypassing and diachronous deposition from density currents: Evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–448

    Article  Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes. I. Theory and its comparison with the study of Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344

    Article  Google Scholar 

  • Bursik MI, Kurbatov AV, Sheridan MF, Woods AW (1998) Transport and deposition in the May 18, 1980, Mount St Helens blast flow. Geology 26:155–158

    Article  Google Scholar 

  • Cagnoli B, Tarling DH (1997) The reliability of magnetic susceptibility (AMS) data as flow direction indicators in friable base surges and ignimbrite deposits: Italian examples. J Volcanol Geotherm Res 75:309–320

    Article  Google Scholar 

  • Capaccioni B, Sarocchi D (1996) Computer-assisted image analysis on clast shape fabric from the Orvieto–Bagnoregio Ignimbrite (Vulsini District, Central Italy): implications on the emplacement mechanisms. J Volcanol Geotherm Res 70:75–90

    Article  Google Scholar 

  • Capaccioni B, Valentini L, Rocchi MBL, Nappi G, Sarocchi D (1997) Image analysis and circular statistics for shape fabric analysis: applications to lithified ignimbrites. Bull Volcanol 58:501–514

    Article  Google Scholar 

  • Capaccioni B, Nappi G, Valentini L (2001) Directional fabric measurements: an investigative approach to transport and depositional mechanisms in pyroclastic flows. J Volcanol Geotherm Res 107:275–292

    Article  Google Scholar 

  • Capaldi G, Civetta L, Di Girolamo P, Zanzara R, Orsi G, Scarpati C (1987) Volcanological and geochemical constraints on the genesis of the deposits of Yellow Tuff in the Neapolitan–Phlegrean area. Rend Accad Sci Fis Mat, Spec Issue 25–40

  • Cole PD, Scarpati C (1993) A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, southern Italy. Bull Volcanol 55:311–326

    Article  Google Scholar 

  • De Lorenzo G (1904) L’attività vulcanica nei Campi Flegrei. Rend Accad Sci Fis Mat 10:204–221

    Google Scholar 

  • De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modelling of the 1982–1984 unrest phenomena at Campi Flegrei caldera (southern Italy). J Volcanol Geotherm Res 48:199–222

    Article  Google Scholar 

  • de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito M, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano–Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:269–301

    Article  Google Scholar 

  • de’ Gennaro M, Incoronato A, Mastrolorenzo G, Adabbo M, Spina G (1999) Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy). J Volcanol Geotherm Res 91:303–320

    Article  Google Scholar 

  • de’ Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139:17–35

    Article  Google Scholar 

  • Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera Italy) assessed by Ar-41/Ar-39 dating method. J Volcanol Geotherm Res 133(1–4):137–170

    Google Scholar 

  • Di Girolamo P, Ghiara MR, Lirer L, Munno R, Rolandi G, Stanzione D (1984) Vulcanologia e petrologia dei Campi Flegrei. Boll Soc Geol Ital 103:349–413

    Google Scholar 

  • Druitt TH (1992) Emplacement of 18 May 1980, lateral blast ENE of Mount St Helens, Washington. Bull Volcanol 54:554–572

    Article  Google Scholar 

  • Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Special publication. vol. 145. Geological Society of London, London, pp 145–182

    Google Scholar 

  • Ellwood BB (1982) Estimates of flow direction from calkalcaline welded tuffs and paleomagnetic data reliability from anisotropy of magnetic susceptibility measurements: central San Juan Mountains, southwest Colorado. Earth Planet Sci Lett 59:303–314

    Article  Google Scholar 

  • Elston WE, Smith EI (1970) Determination of flow direction of ryolitic ash-flow tuffs from fluidal textures. Geol Soc Am Bull 81:3393–3406

    Article  Google Scholar 

  • Fedi M, Nunziata C, Rapolla A (1991) The Campania–Campi Flegrei area: a contribution to discern the best structural model from gravity interpretation. J Volcanol Geotherm Res 48:51–59

    Article  Google Scholar 

  • Fisher RV (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St Helens, Washington. Geol Soc Am Bull 102:1038–1054

    Article  Google Scholar 

  • Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow: emplacement of the Campanian Ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220

    Article  Google Scholar 

  • Florio G, Fedi M, Cella F, Rapolla A (1999) The Campanian Plain and Phlegrean Fields: structural setting from potential field data. J Volcanol Geotherm Res 91:361–379

    Article  Google Scholar 

  • Gumbel EJ, Greenwood JA, Durand D (1953) The circular normal distribution: theory and tables. J Am Stat Assoc 48:131–152

    Article  Google Scholar 

  • Hillhouse JW, Wells RE (1991) Magnetic fabric, flow directions and source area of the Lower Miocene Peach Springs tuff in Arizona, California, and Nevada. J Geophys Res 96:12443–12460

    Article  Google Scholar 

  • Hughes SR, Druitt TH (1998) Particle fabric in a small, type-2 ignimbrite flow unit (Laacher See, Germany) and implications for emplacement dynamics. Bull Volcanol 60:125–136

    Article  Google Scholar 

  • Insinga D, Calvert A, D’Argenio B, Fedele L, Lanphere M, Morra V, Perrotta A, Sacchi M, Scarpati C (2004) 40Ar/39Ar dating of the Neapolitan Yellow Tuff eruption (Campi Flegrei, southern Italy): volcanological and chronostratigraphic implications. EGU Assembly, Nice

    Google Scholar 

  • Kamata H, Mimura K (1983) Flow directions inferred from imbrication in the Handa pyroclastic flow deposit in Japan. Bull Volcanol 46:277–282

    Article  Google Scholar 

  • Kneller BC, Branney MJ (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 42:607–616

    Article  Google Scholar 

  • Kuiper NH (1960) Tests concerning random points on a circle. Koningkl Nederl Akad Wet Proc Ser A 63:38–47

    Google Scholar 

  • Lardini D, Nappi G (1987) I cicli eruttivi del Complesso Vulcanico Cimino. Rend Soc Ital Mineral Petrol 42:141–153

    Google Scholar 

  • La Torre P, Nannini R (1980) Geothermal well location in southern Italy: the contribution of geophysical methods. Boll Geofis Teor Appl 87:201–209

    Google Scholar 

  • Le Pennec JL, Chen Y, Diot H, Froger JL, Gourgaud A (1998) Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: an Anatolian case-study. Earth Planet Sci Lett 157:105–127

    Article  Google Scholar 

  • Lirer L, Munno R (1975) Il tufo giallo napoletano (Campi Flegrei). Period Mineral 44:103–118

    Google Scholar 

  • Lirer L, Luongo G, Scandone R (1987) On the volcanological evolution of Campi Flegrei. EOS 68(16):226–233

    Google Scholar 

  • Locardi E (1965) Tipi di ignimbriti di magmi mediterranei: le ignimbriti del vulcano di Vico. Atti Soc Toscana Sci Nat 72A:55–173

    Google Scholar 

  • Lowe DR (1982) Sediment gravity flows. II. Depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Petrol 52:279–297

    Google Scholar 

  • Lowe DR (1988) Suspended-load fall-out rate as an independent variable in the analysis of current structures. Sedimentology 35:765–776

    Article  Google Scholar 

  • MacDonald WD, Palmer HC (1990) Flow directions in ash-flow tuffs: comparison of geological and magnetic susceptibility measurements, Tshirege member (upper Bandelier tuff), Valles caldera, New Mexico, USA. Bull Volcanol 53:45–49

    Article  Google Scholar 

  • Nappi G, Capaccioni B, Renzulli A, Santi P, Valentini L (1994) Stratigraphy of the Orvieto–Bagnoregio Ignimbrite eruption (Eastern Vulsini District, Central Italy). Mem Descr Carta Geol Ital 49:241–254

    Google Scholar 

  • Nunziata C, Rapolla A (1981) Interpretation of gravity and magnetic data in the Phlegrean Fields geothermal area, Naples, Italy. J Volcanol Geotherm Res 10:209–226

    Article  Google Scholar 

  • Orsi G, Scarpati C (1989) Stratigrafia e dinamica eruttiva del Tufo Giallo Napoletano. Boll GNV 2:917–930

    Google Scholar 

  • Orsi G, Civetta L, Aprile A, D’Antonio M, de Vita S, Gallo G, Piochi M (1991) The Neapolitan Yellow Tuff: eruptive dynamics, emplacement mechanism and magma evolution of a phreatoplinian-to-plinian. In: Orsi G, Rosi M (eds) Large ignimbrite eruptions of the Phlegrean Fields caldera: The Neapolitan Yellow Tuff and the Campanian Ignimbrite. Workshop on Explosive Volcanism, Napoli, 1–8 September 1991, guidebook

  • Orsi G, D’Antonio M, de Vita S, Gallo G (1992) The Neapolitan Yellow Tuff, a large magnitudo trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J Volcanol Geotherm Res 53:275–287

    Article  Google Scholar 

  • Orsi G, de Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Parascandola A (1936) I vulcani occidentali di Napoli. Boll Soc Nat 48:39–58

    Google Scholar 

  • Perrotta A, Scarpati C, Luongo G, Morra V (2006) The Campi Flegrei caldera boundary in the city of Naples. In: De Vivo B (ed) Volcanism in the Campanian Plain: Vesuvius, Campi Flegrei and Ignimbrites. Developments in volcanology. vol. 9. Elsevier, Amsterdam, pp 85–96

    Chapter  Google Scholar 

  • Postma G, Nemec W, Kleinspehn K (1988) Large floating clasts in turbidites: a mechanisms for their emplacement. Sed Geol 58:47–61

    Article  Google Scholar 

  • Potter DB, Oberthal CM (1987) Vent sites and flow directions of the Otowi ash flows (lower Bandelier Tuff) New Mexico. Geol Soc Am Bull 98:66–76

    Article  Google Scholar 

  • Rees AI (1968) The production of preferred orientation in a concentrated dispersion of elongated and flattened grains. J Geol 76:457–465

    Google Scholar 

  • Rees AI (1979) The orientation of grains in a sheared dispersion. Tectonophysics 55:275–287

    Article  Google Scholar 

  • Rees AI (1983) Experiments on the production of transverse grain alignment in a sheared dispersion. Sedimentology 30:437–448

    Article  Google Scholar 

  • Rittmann A (1950) Sintesi Geologica dei Campi Flegrei. Boll Soc Geol It LXIX-II:117–128

    Google Scholar 

  • Rittmann A, Vighi L, Falini F, Ventriglia V, Nicotera P (1950) Rilevamento geologico nei Campi Flegrei. Boll Soc Geol Ital 69:117–362

    Google Scholar 

  • Rosi M, Sbrana A (1987) The Phlegrean Fields. CNR, Quaderni de “La Ricerca Scientifica”, 114, p 175

  • Rosi M, Sbrana A, Principe C (1983) The Phlegrean Fields: structural evolution, volcanic history and eruptive mechanism. J Volcanol Geotherm Res 17:273–288

    Article  Google Scholar 

  • Rusnak GA (1957) The orientation of sand grains under conditions of unidirectional flow. J Geol 65:384–409

    Article  Google Scholar 

  • Scandone R, Bellucci F, Lirer L, Rolandi G (1991) The structure of the Campanian plain and the activity of the Neapolitan volcanoes (Italy). J Volcanol Geotherm Res 48:1–31

    Article  Google Scholar 

  • Scarpati C, Cole P, Perrotta A (1993) The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcanol 55:343–356

    Article  Google Scholar 

  • Scherrillo A, Franco E (1967) Introduzione alla carta stratigrafica del suolo di Napoli. Atti Accad Pontaniana 16:27–37

    Google Scholar 

  • Sparks RSJ (1976) Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology 23:147–188

    Article  Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Sparks RSJ, Carey S, Sigurdsson H (1991) Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38:839–856

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54:685–695

    Article  Google Scholar 

  • Suzuki K, Ui T (1982) Grain orientation and depositional ramps as flow direction indicators of a large-scale pyroclastic flow deposit in Japan. Geology 10:429–432

    Article  Google Scholar 

  • Ui T, Suzuki-Kamata K, Matsusue R, Fujiita K, Metsugi H, Araki M (1989) Flow behaviour of large-scale pyroclastic flows: evidence derived from petrofabric analysis. Bull Volcanol 51:115–122

    Article  Google Scholar 

  • Valentine GA (1987) Stratified flow in pyroclastic surges. Bull Volcanol 49:616–630

    Article  Google Scholar 

  • Valentine GA, Fisher RV (2000) Pyroclastic surges and blasts. In: Sirgudsson H, Houghton B, Memors S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, pp 571–580

    Google Scholar 

  • Valentini L (2002) Analisi del fabric direzionale di depositi piroclastici da flusso in elaborazione di immagine: meccanismi di trasporto e deposizione. Ph.D. thesis, University of Bologna, Italy

  • Valentini L (2003) Directional fabric measurements in image analysis on pyroclastic flow deposits: transport and depositional mechanisms. Plinius 29:91–96

    Google Scholar 

  • Walker GPL (1981) Generation and dispersal of fine ash and dust by volcanic eruptions. J Volcanol Geotherm Res 11:81–92

    Article  Google Scholar 

  • Walker GPL (1983) Ignimbrite types and ignimbrite problems. J Volcanol Geotherm Res 17:65–88

    Article  Google Scholar 

  • Wilson CJN, Houghton BF (2000) Pyroclastic transport and deposition. In: Sirgudsson H, Houghton B, Memors S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, pp 545–554

    Google Scholar 

  • Wilson CJN, Walker GPL (1982) Ignimbrite depositional facies: the anatomy of a pyroclastic flow. J Geol Soc Lond 139:581–592

    Article  Google Scholar 

  • Wohletz K, Orsi G, De Vita S (1995) Eruptive mechanisms of the Neapolitan Yellow Tuff interpreted from stratigraphic, chemical, and granulometric data. J Volcanol Geotherm Res 67:263–290

    Article  Google Scholar 

  • Zollo A, Judenherc S, Auger E, D’Auria L, Virieux J, Capuano P, Chiarabba C, De Franco R, Makris J, Michelini A, Musacchio G (2003) Evidence for the buried rim of Campi Flegrei caldera from 3-D active seismic imaging. Geophys Res Lett 30(19):2002 DOI 10.1029/2003/GLO18173

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank W. Cavazza, R. Cioni, C. Scarpati and J.C. Varekamp for reviewing the manuscript and making helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Valentini.

Additional information

Editorial responsibility: R. Cioni

Appendix

Appendix

Nomenclature:

Symbol:

description

φ :

directional vector mean

φ m :

mean direction value among all samples of each vertical section

Δφ :

deviation of the mean orientation values of samples from the general mean direction

±θ :

directional confidence interval

χ 2 :

Tukey statistical parameter

κ :

parameter of concentration of the measurements around the mean angle

K :

Kuiper statistical parameter

n :

sample size (number of particles)

V 2%:

normalized Tukey index

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valentini, L., Capaccioni, B., Rossi, P.L. et al. Vent area and depositional mechanisms of the Upper Member of the Neapolitan Yellow Tuff (Campi Flegrei, Italy): new insights from directional fabric through image analysis. Bull Volcanol 70, 1087–1101 (2008). https://doi.org/10.1007/s00445-007-0191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0191-9

Keywords

Navigation