Skip to main content
Log in

Analogue models of caldera collapse in strike-slip tectonic regimes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Regional-scale faulting, particularly in strike-slip tectonic regimes, is a relatively poorly constrained factor in the formation of caldera volcanoes. To examine interactions between structures associated with regional-tectonic strike-slip deformation and volcano-tectonic caldera subsidence, we made scaled analogue models. Tabular (sill-like) inclusions of creamed honey in a sand/gypsum mix replicated shallow-level granitic magma chambers in the brittle upper crust. Lateral motion of a base plate sited below half the sand/gypsum pack allowed simulation of regional strike-slip deformation. Our experiments modelled: (1) strike-slip deformation of a homogeneous brittle medium; (2) strike-slip deformation of a brittle medium containing a passive magma reservoir; (3) caldera collapse into sill-like magma reservoirs without regional strike-slip deformation; and (4) caldera collapse into sill-like magma reservoirs after regional strike-slip deformation. Our results show that whilst the magma chamber shape principally influences the development and geometry of volcano-tectonic collapse structures, regional-tectonic strike-slip faults (Riedel shears and Y-shears) may affect a caldera’s structural evolution in two main ways. Firstly, regional strike-slip faults above the magma chamber may form a pre-collapse structural grain that is exploited and reactivated during subsidence. Our experiments show that such faults may preferentially reactivate where tangential to the collapse area and coincident with the chamber margins. In this case, volcano-tectonic extension in the caldera periphery tends to localise on regional-tectonic faults that lie just outside the chamber margins. In addition, volcano-tectonic reverse faults may link with and reactivate pre-collapse regional-tectonic faults that lie just inside the chamber margins. Secondly, where regional-tectonic strike-slip faults define corners in the magma chamber margin, they may halt the propagation of volcano-tectonic reverse faults. The experiments also highlight the potential difficulties in assessing the relative contributions of volcano-tectonic and regional-tectonic subsidence processes to the final caldera structure seen in the field. Disruption of the pre-collapse surface by regional-tectonic faulting was preserved during coherent volcano-tectonic subsidence to produce a caldera floor of differentially-subsided fault blocks. Without definitive evidence for syn-eruptive growth faulting, thickness changes in caldera fill across such regional-tectonic fault blocks in nature could be mistaken as evidence for piecemeal volcano-tectonic collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acocella V, Salvini F, Funiciello R, Faccenna C (1999) The role of transfer structures on volcanic activity at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 91:123–139

    Article  Google Scholar 

  • Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104:81–96

    Article  Google Scholar 

  • Acocella V, Korme T, Salvini F, Funiciello R (2003) Elliptic calderas in the Ethiopian Rift: control of pre-existing structures. J Volcanol Geotherm Res 119:189–203

    Article  Google Scholar 

  • Acocella V, Funiciello R, Marotta E, Orsi G, de Vita S (2004) The role of extensional structures on experimental calderas and resurgence. J Volcanol Geotherm Res 129:199–217

    Article  Google Scholar 

  • Aldiss DT, Ghazali SA (1984) The regional geology and evolution of the Toba volcano-tectonic depression, Indonesia. J Geol Soc (Lond) 141:487–500

    Article  Google Scholar 

  • Basile C, Brun JP (1999) Transtensional faulting patterns ranging from pull-apart basins to transform continental margins: an experimental investigation. J Struct Geol 21:23–37

    Article  Google Scholar 

  • Bellier O, Sebrier M (1994) Relationship between tectonism and volcanism along the Great Sumatran fault zone deduced by SPOT image analyses. Tectonophysics 233:215–231

    Article  Google Scholar 

  • Bellier O, Bellon H, Sébrier M, Sutanto, Maury RC (1999) K-Ar age of the Ranau Tuffs: implications for the Ranau caldera emplacement and slip-partitioning in Sumatra (Indonesia). Tectonophysics 312:347–359

    Article  Google Scholar 

  • Benn K, Odonne F, de Saint Blanquat M (1998) Pluton emplacement during transpression in brittle crust; new views from analogue experiments. Geology 26:1079–1082

    Article  Google Scholar 

  • Bosworth W, Burke K, Strecker M (2003) Effect of stress fields on magma chamber stability and the formation of collapse calderas. Tectonics 22:1042

    Article  Google Scholar 

  • Branney MJ (1995) Downsag and extension at calderas: new perspectives on collapse geometries from ice-melt, mining, and volcanic subsidence. Bull Volcanol 57:303–318

    Google Scholar 

  • Branney MJ, Kokelaar P (1994) Volcanotectonic faulting, soft-state deformation, and rheomorphism of tuffs during development of a piecemeal caldera, English Lake District. Geol Soc Amer Bull 106:507–530

    Article  Google Scholar 

  • Carr WJ, Quinlivan WD (1968) Structure of Timber Mountain resurgent dome, Nevada Test Site. Mem Geol Soc Amer 110:99–108

    Google Scholar 

  • Chesner CA (1998) Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. J Petrol 39:397–438

    Article  Google Scholar 

  • Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth-Sci Rev 69:1–26

    Article  Google Scholar 

  • Corti G, Moratti G, Sani F (2005) Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation. J Struct Geol 27:1547–1562

    Article  Google Scholar 

  • Cruden AR (1998) On the emplacement of tabular granites. J Geol Soc (Lond) 155:853–862

    Article  Google Scholar 

  • Dingwell DB (1999) Granitic melt viscosities. Geol Soc Lond Spec Publ 168:27–38

    Google Scholar 

  • Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions; new insights into Mount St. Helens deformation. Geology 26:79–82

    Article  Google Scholar 

  • Dooley T, McClay K (1997) Analog modeling of pull-apart basins. Bull Am Assoc Pet Geol 81:1804–1826

    Google Scholar 

  • Druitt TH, Sparks RSJ (1984) On the formation of calderas during ignimbrite eruptions. Nature 310:679–681

    Article  Google Scholar 

  • Girard G, van Wyk de Vries B (2005) The Managua Graben and Las Sierras-Masaya volcanic complex (Nicaragua); pull-apart localisation by an intrusive complex: results from analogue modelling. J Volcanol Geotherm Res 144:37–57

    Article  Google Scholar 

  • Goff F, Gardner JN (1994) Evolution of a mineralized geothermal system, Valles Caldera, New Mexico. Econ Geol 89:1803–1832

    Article  Google Scholar 

  • Goodman RE (1989) Introduction to rock mechanics. Wiley, New York

    Google Scholar 

  • Hickman RG, Dobson PF, van Gerven M, Sagala BD, Gunderson RP (2004) Tectonic and stratigraphic evolution of the Sarulla graben geothermal area, North Sumatra, Indonesia. J Asian Earth Sci 23:435–448

    Article  Google Scholar 

  • Hildreth W, Mahood GA (1986) Ring-fracture eruption of the Bishop Tuff. Geol Soc Amer Bull 97:396–403

    Article  Google Scholar 

  • Holohan EP, Troll VR, Walter TR, Münn S, McDonnell S, Shipton ZK (2005) Elliptical calderas in active tectonic settings: an experimental approach. J Volcanol Geotherm Res 144:119–136

    Article  Google Scholar 

  • Hubbert MK (1951) Mechanical basis for certain familiar geologic structures. Geol Soc Amer Bull 62:355–372

    Article  Google Scholar 

  • Hutton DHW, Reavy RJ (1992) Strike-slip tectonics and granite petrogenesis. Tectonics 11:960–967

    Article  Google Scholar 

  • Jacques JM, Reavy RJ (1994) Caledonian plutonism and major lineaments in the SW Scottish Highlands. J Geol Soc (Lond) 151:955–969

    Article  Google Scholar 

  • Jellinek AM, DePaolo DJ (2003) A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • John DA (1995) Tilted middle Tertiary ash-flow calderas and subjacent granitic plutons, southern Stillwater Range, Nevada; cross sections of an Oligocene igneous center. Geol Soc Amer Bull 107:180–200

    Article  Google Scholar 

  • Kennedy B, Stix J, Vallance JW, Lavallée Y, Longpré M-A (2004) Controls on caldera structure: results from analogue sandbox modeling. Geol Soc Amer Bull 116:515–524

    Article  Google Scholar 

  • Kokelaar P, Moore I (2006) Classical areas of British geology: Glencoe caldera volcano, Scotland. British Geological Survey memoir. British Geological Survey, Keyworth

  • Komuro H (1987) Experiments on cauldron formation: a polygonal cauldron and ring fractures. J Volcanol Geotherm Res 31:139–149

    Article  Google Scholar 

  • Lipman PW (1997) Subsidence of ash-flow calderas; relation to caldera size and magma-chamber geometry. Bull Volcanol 59:198–218

    Article  Google Scholar 

  • Marti J, Ablay GJ, Redshaw LT, Sparks RSJ (1994) Experimental studies of collapse calderas. J Geol Soc (Lond) 151:919–929

    Article  Google Scholar 

  • Molyneux SJ, Hutton DHW (2000) Evidence for significant granite space creation by the ballooning mechanism; the example of the Ardara Pluton, Ireland. Geol Soc Amer Bull 112:1543–1558

    Article  Google Scholar 

  • Moore I, Kokelaar P (1998) Tectonically controlled piecemeal caldera collapse; a case study of Glencoe Volcano, Scotland. Geol Soc Amer Bull 110:1448–1466

    Article  Google Scholar 

  • Nappi G, Renzulli A, Santi P (1991) Evidence of incremental growth in the Vulsinian calderas (central Italy). J Volcanol Geotherm Res 47:13–31

    Article  Google Scholar 

  • Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Ramelow J, Riller U, Romer R, Oncken O (2006) Kinematic link between episodic trapdoor collapse of the Negra Muerta caldera and motion on the Olacapato-El Toro fault Zone, southern central Andes. Int J Earth Sci 95:529–541

    Article  Google Scholar 

  • Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52

    Article  Google Scholar 

  • Riller U, Petrinovic I, Ramelow J, Strecker MR, Oncken O (2001) Late Cenozoic tectonism, collapse caldera and plateau formation in the Central Andes. Earth Planet Sci Lett 188:299–311

    Article  Google Scholar 

  • Roche O, Druitt TH, Merle O (2000) Experimental study of caldera formation. J Geophys Res 105:395–416

    Article  Google Scholar 

  • Roman-Berdiel T (1999) Geometry of granite emplacement in the upper crust; contributions of analogue modelling. Geol Soc Lond Spec Pub 168:77–94

    Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (1997) Rheological properties of granitic magmas in their crystallization range. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer, Dordrecht, pp 11–29

    Google Scholar 

  • Schellart WP (2000) Shear test results for cohesion and friction coefficients for different granular materials; scaling implications for their usage in analogue modelling. Tectonophysics 324:1–16

    Article  Google Scholar 

  • Schöpfer MPJ, Steyrer HP (2001) Experimental modeling of strike-slip faults and the self-similar behaviour. Geol Soc Am Mem 193:21–27

    Google Scholar 

  • Schultz RA (1996) Relative scale and the strength and deformability of rock masses. J Struct Geol 18:1139–1149

    Article  Google Scholar 

  • Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12:659–663

    Article  Google Scholar 

  • Skilling IP (1993) Incremental caldera collapse of Suswa volcano, Gregory Rift Valley, Kenya. J Geol Soc (Lond) 150:885–896

    Article  Google Scholar 

  • Smith RL, Bailey RA (1968) Resurgent cauldrons. Geol Soc Am Mem 116:613–662

    Google Scholar 

  • Spinks KD, Acocella V, Cole JW, Bassett KN (2005) Structural control of volcanism and caldera development in the transtensional Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 144:7–22

    Article  Google Scholar 

  • Troll VR, Walter TR, Schminke H-U (2002) Cyclic caldera collapse: Piston or piecemeal subsidence? Field and experimental evidence. Geology 30:135–138

    Article  Google Scholar 

  • Ventura G, Vilardo G, Milano G, Pino NA (1999) Relationships among crustal structure, volcanism and strike-slip tectonics in the Lipari-Vulcano volcanic complex (Aeolian Islands, southern Tyrrhenian Sea, Italy). Phys Earth Planet Inter 116:31–52

    Article  Google Scholar 

  • Walter TR, Troll VR (2001) Formation of caldera periphery faults: an experimental study. Bull Volcanol 63:191–203

    Article  Google Scholar 

  • Woodcock NH, Schubert C (1994) Continental strike-slip tectonics. In: Hancock PL (ed) Continental deformation. Pergamon, Oxford, pp 251–263

    Google Scholar 

Download references

Acknowledgements

We thank John Graham, Thomas Walter, Olivier Roche, and Tim Druitt for support, technical advice, and helpful discussion. An award to VRT and EPH from the Enterprise Ireland International Collaboration Programme greatly aided this work. EPH also appreciates financial assistance from the Department of Geology, the Graduate Studies Office and the Trinity Trust, Trinity College Dublin. Incisive and constructive reviews by G. Girard, U. Riller, O. Roche, and an anonymous reviewer helped us to significantly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoghan P. Holohan.

Additional information

Editorial responsibility: J Stix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holohan, E.P., van Wyk de Vries, B. & Troll, V.R. Analogue models of caldera collapse in strike-slip tectonic regimes. Bull Volcanol 70, 773–796 (2008). https://doi.org/10.1007/s00445-007-0166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-007-0166-x

Keywords

Navigation