Skip to main content

Advertisement

Log in

Intraspecific niche models for the invasive ambrosia beetle Xylosandrus crassiusculus suggest contrasted responses to climate change

  • Original Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different periods of time. We tested whether they exhibited different climatic niches using Schoener’s D and Hellinger’s I indices and modeled their current potential geographical ranges using the Maxent algorithm. The resulting models were projected according to future and recent past climate datasets for Europe and the Mediterranean region. The future projections were performed for the periods 2041–2070 and 2071–2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in climate suitability in Southern Europe and an increase in North Eastern Europe in 2071–2100. Most of Southern and Western Europe was evaluated as already suitable for both clusters in the early twentieth century. Our results show that large climatically suitable regions still remain uncolonized and that climate change will affect the geographical distribution of climatically suitable areas. Climate conditions in Europe were favorable in the twentieth century, suggesting that the recent colonization of Europe is rather due to an increase in propagule pressure via international trade than to recent environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed SE, McInerny G, O’Hara K et al (2015) Scientists and software—surveying the species distribution modelling community. Divers Distrib 21:258–267

    Article  Google Scholar 

  • Andersen HF, Jordal BH, Kambestad M, Kirkendall LR (2012) Improbable but true: the invasive inbreeding ambrosia beetle Xylosandrus morigerus has generalist genotypes. Ecol Evol 2:247–257

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson DM (1974) First record of Xyleborus semiopacus in the continental United States (Coleoptera, Scolytidae). Cooper Econ Insect Rep 24:863–864

    Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Banerjee AK, Mukherjee A, Guo W et al (2019) Combining ecological niche modeling with genetic lineage information to predict potential distribution of Mikania micrantha Kunth in South and Southeast Asia under predicted climate change. Global Ecol Conserv 20:e00800

    Article  Google Scholar 

  • Baquero RA, Barbosa AM, Ayllón D et al (2021) Potential distributions of invasive vertebrates in the Iberian Peninsula under projected changes in climate extreme events. Divers Distrib 27:2262–2276

    Article  Google Scholar 

  • Bellard C, Thuiller W, Leroy B et al (2013) Will climate change promote future invasions? Global Change Biol 19:3740–3748

    Article  Google Scholar 

  • Bradshaw CJ, Leroy B, Bellard C et al (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broennimann O, Di Cola V, Guisan A (2021) Ecospat: spatial ecology miscellaneous methods. R Package Ver 3:2

    Google Scholar 

  • Collart F, Hedenäs L, Broennimann O et al (2020) Intraspecific differentiation: implications for niche and distribution modelling. J Biogeogr 48:415–426

    Article  Google Scholar 

  • Dannenberg MP, Wise EK, Smith WK (2019) Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci Adv 5:eaaw0667

    Article  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham CH, Anderson PR et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Gallego D, Lencina JL, Mas H et al (2017) First record of the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), in the Iberian Peninsula. Zootaxa 4273:431–434

    Article  PubMed  Google Scholar 

  • Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding Allee effects. Popul Ecol 51:355–372

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models with applications in R. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2017) Dismo: species distribution modeling. R package version 1.1-4

  • Hirzel AH, Le Lay G, Helfer V et al (2006) Evaluating the ability of habitat suitability models to predict species presences. Ecol Model 199:142–152

    Article  Google Scholar 

  • Ito M, Kajimura H (2009) Phylogeography of an ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae), in Japan. Appl Entomol Zool 44:549–559

    Article  CAS  Google Scholar 

  • Jordal BH, Normark BB, Farrell BD, Kirkendall LR (2002) Extraordinary haplotype diversity in haplodiploid inbreeders: phylogenetics and evolution of the bark beetle genus Coccotrypes. Mol Phylogenet Evol 23:171–188

    Article  CAS  PubMed  Google Scholar 

  • Karger DN, Zimmermann NE (2018) CHELSAcruts—high resolution temperature and precipitation timeseries for the 20th century and beyond. EnviDat. https://doi.org/10.16904/envidat.159

    Article  Google Scholar 

  • Karger DN, Conrad O, Bohner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122

    Article  PubMed  PubMed Central  Google Scholar 

  • Karger DN, Schmatz DR, Dettling G, Zimmermann NE (2020) High-resolution monthly precipitation and temperature time series from 2006 to 2100. Sci Data 7:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Kavčič A (2018) First record of the Asian ambrosia beetle, Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae, Scolytinae), in Slovenia. Zootaxa 4483:191–193

    Article  PubMed  Google Scholar 

  • Kirkendall LR (2018) Invasive bark beetles (Coleoptera, Curculionidae, Scolytinae) in Chile and Argentina, including two species new for South America, and the correct identity of the Orthotomicus species in Chile and Argentina. Diversity 10:40

    Article  Google Scholar 

  • Maguire KC, Shinneman DJ, Potter KM, Hipkins VD (2018) Intraspecific niche models for Ponderosa Pine (Pinus ponderosa) suggest potential variability in population-level response to climate change. Syst Biol 67:965–978

    Article  PubMed  Google Scholar 

  • Monsimet J, Devineau O, Petillon J, Lafage D (2020) Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci Rep 10:16668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno-Amat E, Mateo RG, Nieto-Lugilde D et al (2015) Impact of model complexity on cross-temporal transferability in Maxent species distribution models: an assessment using paleobotanical data. Ecol Model 312:308–317

    Article  Google Scholar 

  • Nahrung HF, Carnegie AJ (2020) Non-native forest insects and pathogens in Australia: establishment, spread, and impact. Front for Glob Change 3:37. https://doi.org/10.3389/ffgc.2020.00037

    Article  Google Scholar 

  • Nel WJ, De Beer ZW, Wingfield MJ, Duong TA (2020) The granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae, Scolytinae), and its fungal symbiont found in South Africa. Zootaxa 4838(3):zootaxa.4838.3.7

    Article  PubMed  Google Scholar 

  • Pearman PB, D’Amen M, Graham CH et al (2010) Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33:990–1003

    Article  Google Scholar 

  • Peer K, Taborsky M (2005) Outbreeding depression, but no inbreeding depression in haplodiploid ambrosia beetles with regular sibling mating. Evolution 59:317–323

    PubMed  Google Scholar 

  • Pennachio F, Roversi PF, Francardi V, Gatti E (2003) Xylosandrus crassiusculus (Motschulsky) a bark beetle new to Europe (Coleoptera Scolytidae). Redia 86:77–80

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pureswaran DS, Roques A, Battisti A (2018) Forest insects and climate change. Curr for Rep 4:35–50

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raffa KF, Grégoire J-C, Lindgren BS (2015) Chapter 1—Natural history and ecology of bark beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles. Academic Press, San Diego, pp 1–40

    Google Scholar 

  • Rahimi E, Barghjelveh S, Dong P (2021) Estimating potential range shift of some wild bees in response to climate change scenarios in northwestern regions of Iran. J Ecology Environ 45:14

    Article  Google Scholar 

  • Ranger CM, Schultz PB, Frank SD et al (2015) Non-native ambrosia beetles as opportunistic exploiters of living but weakened trees. PLoS ONE 10:e0131496

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranger CM, Reding ME, Schultz PB et al (2016) Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. J Integr Pest Manag 7:1–23

    Article  Google Scholar 

  • Rey O, Estoup A, Vonshak M et al (2012) Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol Lett 15:1266–1275

    Article  PubMed  Google Scholar 

  • Roques A, Bellanger R, Daubrée JB et al (2019) Les scolytes exotiques: une menace pour le maquis. Phytoma 727:16–20

    Google Scholar 

  • Rossi JP, Rasplus JY (2023) Climate change and the potential distribution of the glassy-winged sharpshooter (Homalodisca vitripennis), an insect vector of Xylella fastidiosa. Sci Total Environ 860:160375

    Article  CAS  PubMed  Google Scholar 

  • Samuelson GA (1981) A synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae). Pac inSects 23:50–92

    Google Scholar 

  • Schedl KE (1953) Fauna Madagascariensis—III. Mém De L’institut Sci De Madagascar Série E Tome III:67–106

    Google Scholar 

  • Schoener TW (1968) Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–7226

    Article  Google Scholar 

  • Seebens H, Blackburn TM, Dyer EE et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AB, Godsoe W, Rodriguez-Sanchez F et al (2019) Niche estimation above and below the species level. TREE 34:260–273

    PubMed  Google Scholar 

  • Smith SM, Urvois T, Roques A, Cognato AI (2022) Recognition of the pseudocryptic species Xylosandrus declivigranulatus (Schedl) as distinct from Xylosandrus crassiusculus (Motschulsky) (Coleoptera: Curculionidae: Scolytinae: Xyleborini). Coleopt Bull 76:367–374

    Article  Google Scholar 

  • Storer C, Payton A, McDaniel S et al (2017) Cryptic genetic variation in an inbreeding and cosmopolitan pest, Xylosandrus crassiusculus, revealed using ddRADseq. Ecol Evol 7:10974–10986

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran HX, Doland Nichols J, Li D et al (2023) Seasonal flight and genetic distinction among Xylosandrus crassiusculus populations invasive in Australia. Aust For 85:224–231

    Article  Google Scholar 

  • Urvois T, Auger-Rozenberg M-A, Roques A et al (2021) Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci Rep 11:1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urvois T, Perrier C, Roques A et al (2023) The worldwide invasion history of a pest ambrosia beetle inferred using population genomics. Mol Ecol. https://doi.org/10.1111/mec.16993

    Article  CAS  PubMed  Google Scholar 

  • Vollering J, Halvorsen R, Mazzoni S (2019) The MIAmaxent R package: variable transformation and model selection for species distribution models. Ecol Evol 9:12051–12068

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Funding

Funding was provided by European project LIFE17 NAT/IT/000609.

Author information

Authors and Affiliations

Authors

Contributions

CK, MAAR, JPR, and AR conceived and designed the study. TU collected the data. TU and JPR analyzed the data and made the figures. TU, JPR, and CK wrote the manuscript; other authors provided editorial advice.

Corresponding author

Correspondence to J.-P. Rossi.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Communicated by Sebastian Seibold.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urvois, T., Auger‑Rozenberg, MA., Roques, A. et al. Intraspecific niche models for the invasive ambrosia beetle Xylosandrus crassiusculus suggest contrasted responses to climate change. Oecologia (2024). https://doi.org/10.1007/s00442-024-05528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00442-024-05528-9

Keywords

Navigation