Skip to main content
Log in

Tree communities and functional traits determine herbivore compositional turnover

  • Original Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data can be available on the BEF-China project database at https://data.botanik.uni-halle.de/bef-china/datasets/661 and Science Data Bank at https://www.scidb.cn/en/s/EbeUb2 (https://doi.org/10.57760/sciencedb.09371).

Code availability

Analyses were done in R, and code can be accessed on Science Data Bank at https://www.scidb.cn/en/s/EbeUb2 (https://doi.org/10.57760/sciencedb.09371).

References

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Bakker ES, Ritchie ME, Olff H, Milchunas DG, Knops JM (2006) Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol Lett 9:780–788

    Article  PubMed  Google Scholar 

  • Barone JA (1998) Host-specificity of folivorous insects in a moist tropical forest. J Anim Ecol 67:400–409

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Basset Y et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484. https://doi.org/10.1126/science.1226727

    Article  CAS  PubMed  Google Scholar 

  • Bruelheide H et al (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol Evol 5:74–89. https://doi.org/10.1111/2041-210x.12126

    Article  Google Scholar 

  • Burghardt KT, Tallamy DW (2015) Not all non-natives are equally unequal: reductions in herbivore β-diversity depend on phylogenetic similarity to native plant community. Ecol Lett 18:1087–1098

    Article  PubMed  Google Scholar 

  • Cai W et al (2021) The ecological impact of pest-induced tree dieback on insect biodiversity in Yunnan pine plantations, China. For Ecol Manag. https://doi.org/10.1016/j.foreco.2021.119173

    Article  Google Scholar 

  • Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x

    Article  PubMed  Google Scholar 

  • Chen J-T et al (2023) Functional and phylogenetic relationships link predators to plant diversity via trophic and non-trophic pathways. Proc R Soc B 290:20221658

    Article  PubMed  Google Scholar 

  • Compson ZG et al (2018) Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation. Ecology 99:1759–1770

    Article  PubMed  Google Scholar 

  • da Fonte LFM et al (2021) Amphibian diversity in the Amazonian floating meadows: a Hanski core-satellite species system. Ecography 44:1325–1340. https://doi.org/10.1111/ecog.05610

    Article  Google Scholar 

  • Davidar P et al (2007) The effect of climatic gradients, topographic variation and species traits on the beta diversity of rain forest trees. Glob Ecol Biogeogr 16:510–518

    Article  Google Scholar 

  • Dinnage R, Cadotte MW, Haddad NM, Crutsinger GM, Tilman D (2012) Diversity of plant evolutionary lineages promotes arthropod diversity. Ecol Lett 15:1308–1317. https://doi.org/10.1111/j.1461-0248.2012.01854.x

    Article  PubMed  Google Scholar 

  • Dyer LA et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699. https://doi.org/10.1038/nature05884

    Article  CAS  PubMed  Google Scholar 

  • Eichenberg D, Purschke O, Ristok C, Wessjohann L, Bruelheide H, Austin A (2015) Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J Ecol 103:1667–1679. https://doi.org/10.1111/1365-2745.12475

    Article  CAS  Google Scholar 

  • Endara M-J, Coley PD (2011) The resource availability hypothesis revisited: a meta-analysis. Funct Ecol 25:389–398. https://doi.org/10.1111/j.1365-2435.2010.01803.x

    Article  Google Scholar 

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Forister ML et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci USA 112:442–447. https://doi.org/10.1073/pnas.1423042112

    Article  CAS  PubMed  Google Scholar 

  • Fourcade Y, Åström S, Öckinger E (2019) Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodivers Conserv 28:639–653

    Article  Google Scholar 

  • Howard JJ (1987) Leaf cutting ant diet selection: the role of nutrients, water, and secondary chemistry. Ecology 68:503–515

    Article  Google Scholar 

  • Hsieh TC, Ma KH, Chao A, McInerny G (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210x.12613

    Article  Google Scholar 

  • Hui C, McGeoch MA (2014) Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am Nat 184:684–694

    Article  PubMed  Google Scholar 

  • Hunter MD, Ohgushi T, Price PW (2012) Effects of resource distribution on animal plant interactions. Elsevier, Amsterdam

    Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    Article  PubMed  Google Scholar 

  • Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J Anim Ecol 78:315–327

    Article  PubMed  Google Scholar 

  • Kemp JE, Evans DM, Augustyn WJ, Ellis AG (2017a) Invariant antagonistic network structure despite high spatial and temporal turnover of interactions. Ecography 40:1315–1324

    Article  Google Scholar 

  • Kemp JE, Linder HP, Ellis AG (2017b) Beta diversity of herbivorous insects is coupled to high species and phylogenetic turnover of plant communities across short spatial scales in the Cape Floristic Region. J Biogeogr 44:1813–1823

    Article  Google Scholar 

  • Krasnov BR, Shenbrot GI, van der Mescht L, Khokhlova IS (2020) Drivers of compositional turnover are related to species’ commonness in flea assemblages from four biogeographic realms: zeta diversity and multi-site generalised dissimilarity modelling. Int J Parasitol 50:331–344

    Article  PubMed  Google Scholar 

  • Lamarre GP et al (2012) Herbivory, growth rates, and habitat specialization in tropical tree lineages: implications for Amazonian beta-diversity. Ecology 93:S195–S210

    Article  Google Scholar 

  • Latombe G, Hui C, McGeoch MA (2017) Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol Evol 8:431–442

    Article  Google Scholar 

  • Latombe G, Roura-Pascual N, Hui C (2019) Similar compositional turnover but distinct insular environmental and geographical drivers of native and exotic ants in two oceans. J Biogeogr 46:2299–2310

    Article  Google Scholar 

  • Lazarina M, Kallimanis AS, Dimopoulos P, Psaralexi M, Michailidou D-E, Sgardelis SP (2019) Patterns and drivers of species richness and turnover of neo-endemic and palaeo-endemic vascular plants in a Mediterranean hotspot: the case of Crete, Greece. J Biol Res Thessalon 26:1–13

    Article  Google Scholar 

  • Leihy RI, Duffy GA, Chown SL (2018) Species richness and turnover among indigenous and introduced plants and insects of the Southern Ocean Islands. Ecosphere 9:e02358

    Article  Google Scholar 

  • Li Y et al (2023) Tree dissimilarity determines multi-dimensional beta-diversity of herbivores and carnivores via bottom-up effects. J Anim Ecol 92:442–453

    Article  PubMed  Google Scholar 

  • Maestri R, Patterson BD (2016) Patterns of species richness and turnover for the South American rodent fauna. PLoS ONE 11:e0151895

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques ESDA, Price PW, Cobb NS (2000) Resource abundance and insect herbivore diversity on woody fabaceous desert plants. Environ Entomol 29:696–703

    Article  Google Scholar 

  • Martínez E, Rös M, Bonilla MA, Dirzo R (2015) Habitat heterogeneity affects plant and arthropod species diversity and turnover in traditional cornfields. PLoS ONE 10:e0128950

    Article  PubMed  PubMed Central  Google Scholar 

  • McGeoch MA et al (2019) Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100:e02832

    Article  PubMed  Google Scholar 

  • Ning D, Deng Y, Tiedje JM, Zhou J (2019) A general framework for quantitatively assessing ecological stochasticity. Proc Natl Acad Sci 116:16892–16898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novotný V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572

    Article  Google Scholar 

  • Novotny V et al (2007) Low beta diversity of herbivorous insects in tropical forests. Nature 448:692–695

    Article  CAS  PubMed  Google Scholar 

  • Ohlmann M et al (2018) Mapping the imprint of biotic interactions on β-diversity. Ecol Lett 21:1660–1669

    Article  PubMed  Google Scholar 

  • Pellissier L et al (2013) Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecol Lett 16:600–608. https://doi.org/10.1111/ele.12083

    Article  PubMed  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Aust Ecol 28:642–650. https://doi.org/10.1046/j.1442-9993.2003.01321.x

    Article  Google Scholar 

  • Poorter L, van de Plassche M, Willems S, Boot RG (2004) Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol (stuttg) 6:746–754. https://doi.org/10.1055/s-2004-821269

    Article  CAS  PubMed  Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, populations and communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Qian H, Ricklefs RE (2007) A latitudinal gradient in large-scale beta diversity for vascular plants in North America. Ecol Lett 10:737–744

    Article  PubMed  Google Scholar 

  • Qian H, Ricklefs RE (2012) Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover. Glob Ecol Biogeogr 21:341–351

    Article  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ribeiro SP et al (2005) Canopy insect herbivores in the Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecography 28:315–330

    Article  Google Scholar 

  • Ricotta C, Moretti M (2011) CWM and Rao’s quadratic diversity: a unified framework for functional ecology. Oecologia 167:181–188. https://doi.org/10.1007/s00442-011-1965-5

    Article  PubMed  Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:95–124

    Article  Google Scholar 

  • Rossetti MR, Tscharntke T, Aguilar R, Batáry P (2017) Responses of insect herbivores and herbivory to habitat fragmentation: a hierarchical meta-analysis. Ecol Lett 20:264–272

    Article  PubMed  Google Scholar 

  • Rothwell EM, Holeski LM (2020) Phytochemical defences and performance of specialist and generalist herbivores: a meta-analysis. Ecol Entomol 45:396–405

    Article  Google Scholar 

  • Salcido DM, Forister ML, Garcia Lopez H, Dyer LA (2020) Loss of dominant caterpillar genera in a protected tropical forest. Sci Rep 10:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salgado-Luarte C, Gianoli E (2017) Shade tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol (stuttg) 19:413–419. https://doi.org/10.1111/plb.12534

    Article  CAS  PubMed  Google Scholar 

  • Schaffers AP, Raemakers IP, Sýkora KV, Ter Braak CJ (2008) Arthropod assemblages are best predicted by plant species composition. Ecology 89:782–794

    Article  PubMed  Google Scholar 

  • Schuldt A, Bruelheide H, Chen SM, Chi XL, Wall M, Assmann T (2014) Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests. Oecologia 176:171–182. https://doi.org/10.1007/s00442-014-3006-7

    Article  PubMed  Google Scholar 

  • Schuldt A et al (2019) Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun 10:1460. https://doi.org/10.1038/s41467-019-09448-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sire L et al (2022) Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Commun Biol. https://doi.org/10.1038/s42003-021-02968-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12

    Article  Google Scholar 

  • Specht J, Scherber C, Unsicker SB, Köhler G, Weisser WW (2008) Diversity and beyond: plant functional identity determines herbivore performance. J Anim Ecol 77:1047–1055

    Article  PubMed  Google Scholar 

  • Staab M, Schuldt A (2020) The influence of tree diversity on natural enemies—a review of the “enemies” hypothesis in forests. Curr for Rep 6:243–259

    Article  Google Scholar 

  • Sudta C, Salcido DM, Forister ML, Walla TR, Villamarín-Cortez S, Dyer LA (2022) Jack-of-all-trades paradigm meets long-term data: generalist herbivores are more widespread and locally less abundant. Ecol Lett 25:948–957

    Article  PubMed  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45

    Article  Google Scholar 

  • Volf M et al (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol Lett 21:83–92. https://doi.org/10.1111/ele.12875

    Article  PubMed  Google Scholar 

  • Vos M, Berrocal SM, Karamaouna F, Hemerik L, Vet LEM (2001) Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol Lett 4:38–45. https://doi.org/10.1046/j.1461-0248.2001.00191.x

    Article  Google Scholar 

  • Wang M-Q et al (2019) Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. J Ecol 107:2697–2712. https://doi.org/10.1111/1365-2745.13273

    Article  Google Scholar 

  • Wang M-Q et al (2022) Phylogenetic relatedness, functional traits, and spatial scale determine herbivore co-occurrence in a subtropical forest. Ecol Monogr 92:e01492. https://doi.org/10.1002/ecm.1492

    Article  Google Scholar 

  • Wang MQ et al (2020) Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Mol Ecol 29:2747–2762. https://doi.org/10.1111/mec.15518

    Article  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

    Article  Google Scholar 

  • Wen Z et al (2022) Environmental drivers of sympatric mammalian species compositional turnover in giant panda nature reserves: implications for conservation. Sci Total Environ 806:150944

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Yang Q, Quan Q, Xia L, Ge D, Lv X (2016) Multiscale partitioning of small mammal β-diversity provides novel insights into the Quaternary faunal history of Qinghai-Tibetan Plateau and Hengduan Mountains. J Biogeogr 43:1412–1424

    Article  Google Scholar 

  • Yang X et al (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). Eur J for Res 132:593–606. https://doi.org/10.1007/s10342-013-0696-z

    Article  Google Scholar 

  • Zhang J et al (2017) Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia 183:455–467. https://doi.org/10.1007/s00442-016-3769-0

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the BEF-China consortium for support (especially, Bo Yang and Shan Li). We thank several local assistants (especially Yinquan Qi, Wanxi Wang) for their help in the sampling. We thank Dr. Guillaume Latombe for his help in the analysis. We are grateful to Wenzel Kröber for the assessment of tree traits, Andreas Fichtner and others for the calculation of tree wood volume, Goddert von Oheimb and Matthias Kunz for the measurement of tree structural diversity.

Funding

This work was supported by the National Key Research Development Program of China (2022YFF0802300), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB310304), the National Natural Science Foundation, China (32100343, 32271736) and the National Science Fund for Distinguished Young Scholars (31625024). MQW was supported by the Alexander von Humboldt research fellowships. CDZ's lab was continuously supported by grants from the Key Laboratory of the Zoological Systematics and Evolution of the Chinese Academy of Sciences (grant number 2008DP173354).

Author information

Authors and Affiliations

Authors

Contributions

MQW and ZXW conceived the study; CDZ, AS and MQW designed the research; MQW, YL and JTC collected data, AS, JZK, DC, QSZ, AL, XYS, XJL, KM and HB contributed to the manuscript; MQW conducted the statistical analyses with assistance from ZXW and JZK; MQW wrote the manuscript, with further input from AS and all coauthors.

Corresponding authors

Correspondence to Andreas Schuldt or Chao-Dong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Francisco E Fonturbel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1498 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MQ., Wen, Z., Ke, J. et al. Tree communities and functional traits determine herbivore compositional turnover. Oecologia 203, 205–218 (2023). https://doi.org/10.1007/s00442-023-05463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-023-05463-1

Keywords

Navigation