Skip to main content
Log in

Concerted impacts of antiherbivore defenses and opportunistic Serratia pathogens on the fall armyworm (Spodoptera frugiperda)

  • Plant-microbe-animal interactions – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Insects frequently confront different microbial assemblages. Bacteria inhabiting an insect gut are often commensal, but some can become pathogenic when the insect is compromised from different stressors. Herbivores are often confronted by various forms of plant resistance, but how defenses generate opportunistic microbial infections from residents in the gut are not well understood. In this study, we evaluated the pathogenic tendencies of Serratia isolated from the digestive system of healthy fall armyworm larvae (Spodoptera frugiperda) and how it interfaces with plant defenses. We initially selected Serratia strains that varied in their direct expression of virulence factors. Inoculation of the different isolates into the fall armyworm body cavity indicated differing levels of pathogenicity, with some strains exhibiting no effects while others causing mortality 24 h after injection. Oral inoculations of pathogens on larvae provided artificial diets caused marginal (< 7%) mortality. However, when insects were provided different maize genotypes, mortality from Serratia increased and was higher on plants exhibiting elevated levels of herbivore resistance (< 50% mortality). Maize defenses facilitated an initial invasion of pathogenic Serratia into the larval hemocoel¸ which was capable of overcoming insect antimicrobial defenses. Tomato and soybean further indicated elevated mortality due to Serratia compared to artificial diets and differences between plant genotypes. Our results indicate plants can facilitate the incipient emergence of pathobionts within gut of fall armyworm. The ability of resident gut bacteria to switch from a commensal to pathogenic lifestyle has significant ramifications for the host and is likely a broader phenomenon in multitrophic interactions facilitated by plant defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data accessibility

Raw data have been made publicly available through figshare: https://doi.org/10.6084/m9.figshare.15124428.

References

  • Acevedo FE, Peiffer M, Tan C-W et al (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant Microbe Interact 30:127–137

    CAS  PubMed  Google Scholar 

  • Aggarwal C, Paul S, Paul B et al (2014) A modified semi-synthetic diet for bioassay of non-sporeforming entomopathogenic bacteria against Spodoptera lituira. Biocontrol Sci Technol 24:1202–1205

    Google Scholar 

  • Aggarwal C, Paul S, Tripathi V et al (2015) Chitinolytic activity in Serratia marcescens (strain SEN) and potency against different larval instars of Spodoptera litura with effect of sublethal doses on insect development. Biocontrol 60:631–640

    Google Scholar 

  • Aggarwal C, Paul S, Tripathi V et al (2017) Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J Invertebr Pathol 143:115–123

    CAS  PubMed  Google Scholar 

  • Aggarwal C, Paul S, Nain V et al (2021) Comparative response of Spodoptera litura challenged per os with Serratia marcescens strains differing in virulence. J Invertebr Pathol 183:107562

    CAS  PubMed  Google Scholar 

  • Bai S, Yao Z, Raza MF et al (2021) Regulatory mechanisms of microbial homeostasis in insect gut. Insect Sci 28:286–301

    CAS  PubMed  Google Scholar 

  • Bang K, Park S, Yoo JY, Cho S (2012) Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol Biol Rep 39:5151–5159

    CAS  PubMed  Google Scholar 

  • Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture-independent methods. Appl Environ Microbiol 70:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher GE (1960) Potential bacterial pathogens of insects and their characteristics. J Insect Pathol 2:172–195

    Google Scholar 

  • Bucher G (1963) Nonsporulating bacterial pathogens. In: Bucher G, Steinhaus EA (eds) Insect pathology: an advanced treatise. Academic Press, New York, pp 117–147

    Google Scholar 

  • Buchon N, Broderick NA, Lemaitre B (2013) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11:615–626

    CAS  PubMed  Google Scholar 

  • Caccia S, Di I, La A et al (2016) Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proc Natl Acad Sci 113:9486–9491. https://doi.org/10.1073/pnas.1521741113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castagnola A, Stock SP (2014) Common virulence factors and tissue targets of entomopathogenic bacteria for biological control of lepidopteran pests. Insects 5:139–166

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhang N, Xie S et al (2020) Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ Int 143:105886

    CAS  PubMed  Google Scholar 

  • Chippendale GM (1970) Metamorphic changes in haemolymph and midgut proteins of the southwestern corn borer, Diatraea grandiosella. J Insect Physiol 16:1909–1920

    CAS  Google Scholar 

  • Cory JS, Hoover K (2006) Interactions plant-mediated effects in insect—pathogen interactions. Trends Ecol Evol 21:278–286

    PubMed  Google Scholar 

  • De Groote H, Kimenju SC, Munyua B et al (2020) Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agric Ecosyst Environ 292:106804

    PubMed  PubMed Central  Google Scholar 

  • De Mandal S, Lin B, Shi M et al (2020) iTRAQ-based comparative proteomic analysis of larval midgut from the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) challenged with the entomopathogenic bacteria Serratia marcescens. Front Physiol 11:442

    PubMed  PubMed Central  Google Scholar 

  • De Roode JC, Pedersen AB, Hunter MD, Altizer S (2008) Host plant species affects virulence in monarch butterfly parasites. J Anim Ecol 77:120–126

    PubMed  Google Scholar 

  • Del Campo ML, Halitschke R, Short SM et al (2013) Dietary plant phenolic improves survival of bacterial infection in Manduca sexta caterpillars. Entomol Exp Appl 146:321–331

    PubMed  PubMed Central  Google Scholar 

  • Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298

    Google Scholar 

  • Ding J, Zhu D, Wang H-T et al (2020) Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles. Environ Sci Technol 54:7450–7460

    CAS  PubMed  Google Scholar 

  • Duffey SS, Stout MJ (1996) Antinutritive defenses and toxic components against insects. Arch Insect Biochem Physiol 32:3–37

    CAS  Google Scholar 

  • Elbing K, Brent R (2002) Media preparation and bacteriological tools. Curr Protoc Mol Biol 59:1

    Google Scholar 

  • El-Sanousi SM, El-Sarag MSA, Mohamed SE (1987) Properties of Serratia marcescens isolated from diseased honeybee (Apis mellifera) larvae. Microbiology 133:215–219

    Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735

    CAS  PubMed  Google Scholar 

  • Erlandson MA, Toprak U, Hegedus DD (2019) Role of the peritrophic matrix in insect–pathogen interactions. J Insect Physiol 117:103894

    CAS  PubMed  Google Scholar 

  • Eski A, Demir İ, Güllü M, Demirbağ Z (2018) Biodiversity and pathogenicity of bacteria associated with the gut microbiota of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Microb Pathog 121:350–358

    PubMed  Google Scholar 

  • Farrar RR Jr, Martin PAW, Ridgway RL (2001) A strain of Serratia marcescens (Enterobacteriaceae) with high virulence per os to larvae of a laboratory colony of the corn earworm (Lepidoptera: Noctuidae). J Entomol Sci 36:380–390

    Google Scholar 

  • Fescemyer HW, Sandoya GV, Gill TA et al (2013) Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochem Mol Biol 43:280–291

    CAS  PubMed  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    PubMed  PubMed Central  Google Scholar 

  • Giambò F, Teodoro M, Costa C, Fenga C (2021) Toxicology and microbiota: how do pesticides influence gut microbiota? A review. Int J Environ Res Public Health 18:5510

    PubMed  PubMed Central  Google Scholar 

  • Gichuhi J, Subramanian S, Khamis FM et al (2020) Diversity of fall armyworm, Spodoptera fugiperda and their bacterial community in Kenya. PeerJ 8:e8701

    PubMed  PubMed Central  Google Scholar 

  • Gokce C, Sevim A, Demirbag Z, Demir I (2010) Isolation, characterization and pathogenicity of bacteria from Rhynchites bacchus (Coleoptera: Rhynchitidae). Biocontrol Sci Technol 20:973–982

    Google Scholar 

  • Gomes AFF, Omoto C, Cônsoli FL (2020) Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. J Pest Sci (2004) 93:833–851

    Google Scholar 

  • Howe GA, Schaller A (2008) Direct defenses in plants and their induction by wounding and insect herbivores. Induced plant resistance to herbivory. Springer, pp 7–29

    Google Scholar 

  • Hurst MRH, Beattie A, Jones SA et al (2018) Serratia proteamaculans strain AGR96X encodes an antifeeding prophage (tailocin) with activity against grass grub (Costelytra giveni) and Manuka beetle (Pyronota species) larvae. Appl Environ Microbiol 84:e02739-e2817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones A, Mason C, Felton G, Hoover K (2019) Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci Rep 9:1–11

    Google Scholar 

  • Kawaoka S, Katsuma S, Daimon T et al (2008) Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch Insect Biochem Physiol 67:87–96

    CAS  PubMed  Google Scholar 

  • Konno K, Mitsuhashi W (2019) The peritrophic membrane as a target of proteins that play important roles in plant defense and microbial attack. J Insect Physiol 117:103912

    CAS  PubMed  Google Scholar 

  • Lauzon CR, BusserT TG, Sjogren RE, Prokopy RJ (2013) Serratia marcescens as a bacterial pathogen of Rhagoletis pomonella flies (Diptera: Tephritidae). Eur J Entomol 100:87–92

    Google Scholar 

  • Lee J-H, Lee K-A, Lee W-J (2017) Microbiota, gut physiology, and insect immunity. Adv Insect Phys 52:111–138

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Ludlum CT, Felton GW, Duffey SS (1991) Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thuringiensis subsp. kurstaki to Heliothis zea. J Chem Ecol 17:217–237

    CAS  PubMed  Google Scholar 

  • Lyons JI, Pierce AA, Barribeau SM et al (2012) Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Mol Ecol 21:3433–3444

    PubMed  Google Scholar 

  • Mackintosh JA, Gooley AA, Karuso PH et al (1998) A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev Comp Immunol 22:387–399

    CAS  PubMed  Google Scholar 

  • Mason CJ (2020) Complex relationships at the intersection of insect gut microbiomes and plant defenses. J Chem Ecol 46:793–807

    CAS  PubMed  Google Scholar 

  • Mason KL, Stepien TA, Blum JE et al (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. Mbio 2:1–7

    Google Scholar 

  • Mason CJ, Ray S, Shikano I et al (2019) Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proc Natl Acad Sci 116:15991–15996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason CJ, Clair AS, Peiffer M et al (2020) Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15:e0229848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason CJ, Hoover K, Felton GW (2021) Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci Rep 11:1–10

    Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    PubMed  Google Scholar 

  • Mohan S, Ma PWK, Pechan T et al (2006) Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. J Insect Physiol 52:21–28

    CAS  PubMed  Google Scholar 

  • Mohan S, Ma PWK, Williams WP, Luthe DS (2008) A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis toxin. PLoS ONE 3:1–7

    Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR et al (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomol 26:286–300

    Google Scholar 

  • Moran NA, Ochman H, Hammer TJ (2019) Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Syst 50:451–475

    Google Scholar 

  • Nesa J, Sadat A, Buccini DF et al (2019) Antimicrobial peptides from: Bombyx mori: a splendid immune defense response in silkworms. RSC Adv 10:512–523

    PubMed  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    CAS  PubMed  Google Scholar 

  • Ode PJ (2019) Plant toxins and parasitoid trophic ecology. Curr Opin Insect Sci 32:118–123

    PubMed  Google Scholar 

  • PaniaguaVoirol LR, Frago E, Kaltenpoth M, Hilker M, Fatouros NE (2018) Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front Microbiol 9:556

    Google Scholar 

  • Pechan T, Cohen A, Williams WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci 99:13319–13323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen LM, Tisa LS (2013) Friend or foe? a review of the mechanisms that drive serratia towards diverse lifestyles. Can J Microbiol 59:627–640

    CAS  PubMed  Google Scholar 

  • Pitlik SD, Koren O (2017) How holobionts get sick–-toward a unifying scheme of disease. Microbiome 5:64

    PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Raymann K, Coon KL, Shaffer Z et al (2018) Pathogenicity of Serratia marcescens strains in honey bees. Mbio 9:e01649-e1718

    PubMed  PubMed Central  Google Scholar 

  • Rivera-Vega LJ, Stanley BA, Stanley A, Felton GW (2018) Proteomic analysis of labial saliva of the generalist cabbage looper (Trichoplusia ni) and its role in interactions with host plants. J Insect Physiol 107:97–103

    CAS  PubMed  Google Scholar 

  • RStudio Team (2020) RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/

  • Secil ES, Sevim A, Demirbag Z, Demir I (2012) Isolation, characterization and virulence of bacteria from Ostrinia nubilalis (Lepidoptera: Pyralidae). Biologia 67:767–776

    Google Scholar 

  • Shikano I (2017) Evolutionary ecology of multitrophic interactions between plants, insect herbivores and entomopathogens. J Chem Ecol. https://doi.org/10.1007/s10886-017-0850-z

    Article  PubMed  Google Scholar 

  • Shikano I, Shumaker KL, Peiffer M et al (2017) Plant—mediated effects on an insect–pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia 183:1121–1134

    PubMed  Google Scholar 

  • Shikano I, Pan Q, Hoover K, Felton GW (2018) Herbivore-induced defenses in tomato plants enhance the lethality of the entomopathogenic bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 44:947–956

    CAS  PubMed  Google Scholar 

  • Shorey HH, Hale RL (1965) Mass-rearing of the larvae of nine noctuid species on a simple artificial medium. J Econ Entomol 58:522–524

    Google Scholar 

  • Sikorowski PP, Lawrence AM, Inglis GD (2001) Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae). Am Entomol 47:51–60

    Google Scholar 

  • Tan C, Peiffer M, Hoover K et al (2018) Symbiotic polydnavirus of a parasite manipulates caterpillar and plant immunity. Proc Natl Acad Sci 116:5199–5204

    Google Scholar 

  • Team Rs (2019) RStudio: integrated development for R.

  • Ugwu JA, Liu M, Sun H, Asiegbu FO (2020) Microbiome of the larvae of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) from maize plants. J Appl Entomol 144:764–776

    CAS  Google Scholar 

  • Wan N, Jiang J, Li B (2016) Effect of host plants on the infectivity of nucleopolyhedrovirus to Spodoptera exigua larvae. J Appl Entomol 140:636–644

    CAS  Google Scholar 

  • Wan N, Li X, Guo L et al (2018) Phytochemical variation mediates the susceptibility of insect herbivores to entomoviruses. J Appl Entomol 142:705–715

    CAS  Google Scholar 

  • Wang Y, Rozen DE (2018) Gut microbiota in the burying beetle, Nicrophorus vespilloides, provide colonization resistance against larval bacterial pathogens. Ecol Evol 8:1646–1654

    PubMed  PubMed Central  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams WP, Davis FM (2000) Registration of maize germplasms Mp713 and Mp714. Crop Sci 40(2)

  • Williams WP, Davis FM, Windham GL (1990) Registration of Mp708 germplasm line of maize. Crop Sci 30(3)

Download references

Acknowledgements

We thank Dr. Asher Jones for providing isolates and general input into these experiments. We appreciate Dr. W. Paul Williams for providing maize seeds. We appreciate the constructive comments by Dr. Merijn Kant and two anonymous reviewers. Funding was provided by United States Department of Agriculture NIFA Postdoctoral Fellowship 2018-67012-27979 awarded to C.J.M., US Department of Agriculture AFRI Grant 2017-67013-26596 awarded to G.W.F., and Hatch Project Grant PEN04576. This research was supported in part by the US Department of Agriculture, Agricultural Research Service. The findings and conclusions in this publication are those of the authors and should not be construed to represent any official USDA or US Government determination or policy. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

CJM, KH, and GWF conceived and designed the experiments. CJM, AS, and MP performed the experiments. CJM analyzed the data. CJM, KH, and GWF wrote the manuscript and other authors provided editorial feedback.

Corresponding author

Correspondence to Charles J. Mason.

Additional information

Communicated by Merijn Kant.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mason, C.J., Peiffer, M., St Clair, A. et al. Concerted impacts of antiherbivore defenses and opportunistic Serratia pathogens on the fall armyworm (Spodoptera frugiperda). Oecologia 198, 167–178 (2022). https://doi.org/10.1007/s00442-021-05072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-021-05072-w

Keywords

Navigation