Adrian R, Schneider-Olt B (1999) Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J Plankton Res 21:2175–2190. https://doi.org/10.1093/plankt/21.11.2175
Article
Google Scholar
Adrian R, O’Reilly CM, Zagarese H et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283
Article
PubMed
PubMed Central
Google Scholar
Agrawal AA (1998) Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecologica 19:331–337. https://doi.org/10.1016/S1146-609X(98)80037-4
Article
Google Scholar
Ahlgren G, Lundstedt L, Brett M, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12:809–818. https://doi.org/10.1093/plankt/12.4.809
CAS
Article
Google Scholar
Atkinson A (1995) Omnivory and feeding selectivity in five copepod species during spring in the Bellingshausen Sea, Antarctica. ICES J Mar Sci 52:385–396. https://doi.org/10.1016/1054-3139(95)80054-9
Article
Google Scholar
Becker C, Boersma M (2003) Resource quality effects on life histories of Daphnia. Limnol Oceanogr 48:700–706. https://doi.org/10.4319/lo.2003.48.2.0700
Article
Google Scholar
Bell RT, Vrede K, Stensdotter-Blomberg U, Blomqvist P (1993) Stimulation of the microbial food web in an oligotrophic, slightly acidified lake. Limnol Oceanogr 38:1532–1538. https://doi.org/10.4319/lo.1993.38.7.1532
Article
Google Scholar
Berger I, Maier G (2001) The mating and reproductive biology of the freshwater planktonic calanoid copepod Eudiaptomus gracilis. Freshw Biol 46:787–794. https://doi.org/10.1046/j.1365-2427.2001.00717.x
Article
Google Scholar
Bergström A-K, Jansson M, Drakare S, Blomqvist P (2003) Occurrence of mixotrophic flagellates in relation to bacterioplankton production, light regime and availability of inorganic nutrients in unproductive lakes with differing humic contents. Freshw Biol 48:868–877. https://doi.org/10.1046/j.1365-2427.2003.01061.x
Article
Google Scholar
Bertoni R, Callieri C, Corno G (2002) The mixotrophic flagellates as key organisms from DOC to Daphnia in an oligotrophic alpine lake. Int Ver Theor Angew Limnol Verhandlungen 28:392–395
Google Scholar
Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–495. https://doi.org/10.1126/science.231.4737.493
CAS
Article
PubMed
Google Scholar
Boenigk J, Stadler P (2004) Potential toxicity of chrysophytes affiliated with Poterioochromonas and related ‘Spumella-like’flagellates. J Plankton Res 26:1507–1514. https://doi.org/10.1093/plankt/fbh139
Article
Google Scholar
Branco P, Egas M, Elser JJ, Huisman J (2018) Eco-evolutionary dynamics of ecological stoichiometry in plankton communities. Am Nat 192:E1–E20. https://doi.org/10.1086/697472
Article
PubMed
Google Scholar
Brandl Z (2005) Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546:475–489. https://doi.org/10.1007/s10750-005-4290-3
Article
Google Scholar
Brans KI, Jansen M, Vanoverbeke J et al (2017) The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob Change Biol 23:5218–5227. https://doi.org/10.1111/gcb.13784
Article
Google Scholar
Brucet S, Boix D, Quintana XD et al (2010) Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnol Oceanogr 55:1697–1711. https://doi.org/10.4319/lo.2010.55.4.1697
Article
Google Scholar
Burns CW (1968) The relationship between body size of filter-feeding cladocera and the maximum size of particle ingested. Limnol Oceanogr 13:675–678. https://doi.org/10.4319/lo.1968.13.4.0675
Article
Google Scholar
Cabrerizo MJ, Álvarez-Manzaneda MI, León-Palmero E et al (2020) Warming and CO2 effects under oligotrophication on temperate phytoplankton communities. Water Res 173:115579. https://doi.org/10.1016/j.watres.2020.115579
CAS
Article
PubMed
Google Scholar
Callieri C, Bertoni R, Contesini M, Bertoni F (2014) Lake level fluctuations boost toxic cyanobacterial “Oligotrophic Blooms”. PLoS ONE. https://doi.org/10.1371/journal.pone.0109526
Article
PubMed
PubMed Central
Google Scholar
Clesceri LS, Greenberg AE, Eaton AD (eds) (1999) Standard methods for the examination of water and wastewater, 20th edn. APHA, AWWA, WEF, Washington
Google Scholar
Colina M, Calliari D, Carballo C, Kruk C (2016) A trait-based approach to summarize zooplankton–phytoplankton interactions in freshwaters. Hydrobiologia 767:221–233. https://doi.org/10.1007/s10750-015-2503-y
CAS
Article
Google Scholar
de Wit HA, Valinia S, Weyhenmeyer GA et al (2016) Current browning of surface waters will be further promoted by wetter climate. Environ Sci Technol Lett 3:430–435. https://doi.org/10.1021/acs.estlett.6b00396
CAS
Article
Google Scholar
DeMott WR (1986) The role of taste in food selection by freshwater zooplankton. Oecologia 69:334–340. https://doi.org/10.1007/BF00377053
Article
PubMed
Google Scholar
Dokulil MT, Skolaut C (1991) Aspects of phytoplankton seasonal succession in Mondsee, Austria, with particular reference to the ecology of Dinobryon EHRENB. Verhandlungen Int Ver Für Theor Angew Limnol 2:968–973
Google Scholar
Dokulil MT, Teubner K (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshw Biol 50:1594–1604. https://doi.org/10.1111/j.1365-2427.2005.01431.x
CAS
Article
Google Scholar
Domaizon I, Viboud S, Fontvieille D (2003) Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy—importance of mixotrophy. FEMS Microbiol Ecol 46:317–329. https://doi.org/10.1016/S0168-6496(03)00248-4
CAS
Article
PubMed
Google Scholar
Elser JJ, Dobberfuhl DR, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P StoichiometryToward a unified view of cellular and ecosystem processes. Bioscience 46:674–684. https://doi.org/10.2307/1312897
Article
Google Scholar
Faithfull CL, Wenzel A, Vrede T, Bergström A-K (2011) Testing the light: nutrient hypothesis in an oligotrophic boreal lake. Ecosphere. https://doi.org/10.1890/ES11-00223.1(2:art123)
Article
Google Scholar
Fischer R, Giebel H-A, Hillebrand H, Ptacnik R (2017) Importance of mixotrophic bacterivory can be predicted by light and loss rates. Oikos 126:713–722. https://doi.org/10.1111/oik.03539
CAS
Article
Google Scholar
Flynn KJ, Mitra A, Glibert PM, Burkholder JM (2018) Mixotrophy in harmful algal blooms: by whom, on whom, when, why, and what next. In: Glibert PM, Berdalet E, Burford MA, et al. (eds) Global ecology and oceanography of harmful algal blooms. Springer International Publishing, Cham, pp 113–132
Chapter
Google Scholar
Forsström L, Roiha T, Rautio M (2013) Responses of microbial food web to increased allochthonous DOM in an oligotrophic subarctic lake. Aquat Microb Ecol 68:171–184. https://doi.org/10.3354/ame01614
Article
Google Scholar
Franke WW, Herth W (1973) Cell and lorica fine structure of the chrysomonad alga, Dinobryon sertularia Ehr. (Chrysophyceae). Arch Für Mikrobiol 91:323–344. https://doi.org/10.1007/BF00425052
Article
Google Scholar
Frost BW (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815. https://doi.org/10.4319/lo.1972.17.6.0805
Article
Google Scholar
Fussmann G (1996) The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities; an enclosure study. J Plankton Res 18:1897–1915. https://doi.org/10.1093/plankt/18.10.1897
Article
Google Scholar
Geller W, Müller H (1981) The filtration apparatus of cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49:316–321. https://doi.org/10.1007/BF00347591
Article
PubMed
Google Scholar
Grey J, Jones RI (1999) Carbon stable isotopes reveal complex trophic interactions in lake plankton. Rapid Commun Mass Spectrom 13:1311–1314. https://doi.org/10.1002/(SICI)1097-0231(19990715)13:13<1311:AID-RCM545>3.0.CO;2-P
CAS
Article
PubMed
Google Scholar
Hansen HP, Koroleff F (2007) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim, pp 159–228
Google Scholar
Hart RC, Santer B (1994) Nutritional suitability of some uni-algal diets for freshwater calanoids: unexpected inadequacies of commonly used edible greens and others. Freshw Biol 31:109–116. https://doi.org/10.1111/j.1365-2427.1994.tb00843.x
Article
Google Scholar
Hartmann M, Grob C, Tarran GA et al (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA 109:5756–5760. https://doi.org/10.1073/pnas.1118179109
Article
PubMed
PubMed Central
Google Scholar
Heissenberger M, Watzke J, Kainz MJ (2010) Effect of nutrition on fatty acid profiles of riverine, lacustrine, and aquaculture-raised salmonids of pre-alpine habitats. Hydrobiologia 650:243–254. https://doi.org/10.1007/s10750-010-0266-z
CAS
Article
Google Scholar
Hessen DO (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814. https://doi.org/10.1086/285441
Article
Google Scholar
Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry: an elementary approach using basic principles. Limnol Oceanogr 58:2219–2236. https://doi.org/10.4319/lo.2013.58.6.2219
CAS
Article
Google Scholar
Hiltunen T, Barreiro A, Hairston NG (2012) Mixotrophy and the toxicity of Ochromonas in pelagic food webs. Freshw Biol 57:2262–2271. https://doi.org/10.1111/fwb.12000
CAS
Article
Google Scholar
Huisman J, Codd GA, Paerl HW et al (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1
CAS
Article
PubMed
Google Scholar
Infante A (1973) Untersuchungen über die Ausnutzbarkeit verschiedener Algen durch das zooplankton. Arch Für Hydrobiol Suppl 42:340–405
Google Scholar
Jäger CG, Vrede T, Persson L, Jansson M (2014) Interactions between metazoans, autotrophs, mixotrophs and bacterioplankton in nutrient-depleted high DOC environments: a long-term experiment. Freshw Biol 59:1596–1607. https://doi.org/10.1111/fwb.12366
CAS
Article
Google Scholar
Jeppesen E, Søndergaard M, Jensen JP et al (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50:1747–1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x
CAS
Article
Google Scholar
Kainz MJ, Ptacnik R, Rasconi S, Hager HH (2017) Irregular changes in lake surface water temperature and ice cover in subalpine Lake Lunz, Austria. Inland Waters 7:27–33. https://doi.org/10.1080/20442041.2017.1294332
Article
Google Scholar
Kamjunke N, Henrichs T, Gaedke U (2007) Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. J Plankton Res 29:39–46. https://doi.org/10.1093/plankt/fbl054
CAS
Article
Google Scholar
Katechakis A, Stibor H (2006) The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions. Oecologia 148:692–701. https://doi.org/10.1007/s00442-006-0413-4
Article
PubMed
Google Scholar
Katechakis A, Haseneder T, Kling R, Stibor H (2005) Mixotrophic versus photoautotrophic specialist algae as food for zooplankton: the light: nutrient hypothesis might not hold for mixotrophs. Limnol Oceanogr 50:1290–1299. https://doi.org/10.4319/lo.2005.50.4.1290
CAS
Article
Google Scholar
Kerfoot WC, Kirk KL (1991) Degree of taste discrimination among suspension-feeding cladocerans and copepods: Implications for detritivory and herbivory. Limnol Oceanogr 36:1107–1123. https://doi.org/10.4319/lo.1991.36.6.1107
Article
Google Scholar
Kies L (1967) Über Zellteilung und Zygotenbildung bei Roya obtusa (Breb.) West et West. Mitteilungen Staatsinst Für Allg Bot Hambg 12:35–42
Google Scholar
Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–339. https://doi.org/10.1111/j.1469-185X.2010.00148.x
Article
PubMed
Google Scholar
Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195
Article
Google Scholar
Knisely K, Geller W (1986) Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69:86–94. https://doi.org/10.1007/BF00399042
Article
PubMed
Google Scholar
Lampert W, McCauley E, Manly BFJ (2003) Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc R Soc Lond B Biol Sci 270:765–773. https://doi.org/10.1098/rspb.2002.2291
Article
Google Scholar
Lehman JT (1976) Ecological and nutritional studies on Dinobryon Ehrenb.: seasonal periodicity and the phosphate toxicity problem. Limnol Oceanogr 21:646–658. https://doi.org/10.4319/lo.1976.21.5.0646
CAS
Article
Google Scholar
McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
CAS
Article
Google Scholar
McKenrie CH, Deibel D, Paranjape MA, Thompson RJ (1995) The marine mixotroph Dinobryon Balticum (chrysophyceae): phagotrophy and survival in a cold ocean1. J Phycol 31:19–24. https://doi.org/10.1111/j.0022-3646.1995.00019.x
Article
Google Scholar
Meunier CL, Boersma M, Wiltshire KH, Malzahn AM (2016) Zooplankton eat what they need: copepod selective feeding and potential consequences for marine systems. Oikos 125:50–58. https://doi.org/10.1111/oik.02072
CAS
Article
Google Scholar
Moorthi SD, Ptacnik R, Sanders RW et al (2017) The functional role of planktonic mixotrophs in altering seston stoichiometry. Aquat Microb Ecol 79:235–245. https://doi.org/10.3354/ame01832
Article
Google Scholar
Müller-Navarra D, Lampert W (1996) Seasonal patterns of food limitation in Daphnia galeata: separating food quantity and food quality effects. J Plankton Res 18:1137–1157. https://doi.org/10.1093/plankt/18.7.1137
Article
Google Scholar
Nejstgaard JC, Naustvoll L-J, Sazhin A (2001) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75. https://doi.org/10.3354/meps221059
Article
Google Scholar
O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. https://doi.org/10.1016/j.hal.2011.10.027
CAS
Article
Google Scholar
Peltomaa ET, Aalto SL, Vuorio KM, Taipale SJ (2017) The importance of phytoplankton biomolecule availability for secondary production. Front Ecol Evol. https://doi.org/10.3389/fevo.2017.00128
Article
Google Scholar
Persson J, Vrede T (2006) Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshw Biol 51:887–900. https://doi.org/10.1111/j.1365-2427.2006.01540.x
CAS
Article
Google Scholar
Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
Article
Google Scholar
Ptacnik R, Lepistö L, Willén E et al (2008) Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat Ecol 42:227–236. https://doi.org/10.1007/s10452-008-9181-z
CAS
Article
Google Scholar
Ptacnik R, Gomes A, Royer S-J et al (2016) A light-induced shortcut in the planktonic microbial loop. Sci Rep 6:srep29286. https://doi.org/10.1038/srep29286
Article
Google Scholar
Pugnetti A, Bettinetti R (1999) Biomass and species structure of the phytoplankton of an high mountain lake (Lake Paione Superiore, Central Alps, Italy). J Limnol 58:127–130. https://doi.org/10.4081/jlimnol.1999.127
Article
Google Scholar
Reynolds CS, Huszar V, Kruk C et al (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417
Article
Google Scholar
Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7:279–294
Article
Google Scholar
Roulet N, Moore TR (2006) Environmental chemistry: browning the waters. Nature 444:283–284. https://doi.org/10.1038/444283a
CAS
Article
PubMed
Google Scholar
Sanders RW, Porter KG, Bennett SJ, DeBiase AE (1989) Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol Oceanogr 34:673–687. https://doi.org/10.4319/lo.1989.34.4.0673
Article
Google Scholar
Sandgren CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 9–104
Google Scholar
Schoenberg SA, Maccubbin AE, Hodson RE (1984) Cellulose digestion by freshwater microcrustacea. Limnol Oceanogr 29:1132–1136. https://doi.org/10.4319/lo.1984.29.5.1132
CAS
Article
Google Scholar
Smyntek PM, Teece MA, Schulz KL, Storch AJ (2008) Taxonomic differences in the essential fatty acid composition of groups of freshwater zooplankton relate to reproductive demands and generation time. Freshw Biol 53:1768–1782. https://doi.org/10.1111/j.1365-2427.2008.02001.x
CAS
Article
Google Scholar
Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147:183–194. https://doi.org/10.1007/s00442-005-0320-0
Article
PubMed
Google Scholar
Sommer U, Stibor H (2002) Copepoda—cladocera—tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174. https://doi.org/10.1046/j.1440-1703.2002.00476.x
Article
Google Scholar
Sommer U, Sommer F, Santer B et al (2001) Complementary impact of copepods and cladocerans on phytoplankton. Ecol Lett 4:545–550. https://doi.org/10.1046/j.1461-0248.2001.00263.x
Article
Google Scholar
Sommer U, Sommer F, Santer B et al (2003) Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia 135:639–647. https://doi.org/10.1007/s00442-003-1214-7
Article
PubMed
Google Scholar
Šorf M, Brandl Z (2012) The rotifer contribution to the diet of Eudiaptomus gracilis (G. O. Sars, 1863) (copepoda, calanoida). Crustaceana 85:1421–1429. https://doi.org/10.1163/15685403-00003133
Article
Google Scholar
Svensson J-E, Stenson JAE (1991) Herbivoran impact on phytoplankton community structure. Hydrobiologia 226:71–80. https://doi.org/10.1007/BF00006808
Article
Google Scholar
Taipale SJ, Vuorio K, Brett MT et al (2016) Lake zooplankton δ13C values are strongly correlated with the δ13C values of distinct phytoplankton taxa. Ecosphere 7:e01392. https://doi.org/10.1002/ecs2.1392
Article
Google Scholar
Talling JF (2003) Phytoplankton–zooplankton seasonal timing and the ‘clear-water phase’ in some English lakes. Freshw Biol 48:39–52. https://doi.org/10.1046/j.1365-2427.2003.00968.x
CAS
Article
Google Scholar
Taranu ZE, Gregory-Eaves I, Leavitt PR et al (2015) Acceleration of cyanobacterial dominance in north temperate-subarctic lakes during the Anthropocene. Ecol Lett 18:375–384. https://doi.org/10.1111/ele.12420
Article
PubMed
Google Scholar
Tong Y, Zhang W, Wang X et al (2017) Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nat Geosci 10:507–511. https://doi.org/10.1038/ngeo2967
CAS
Article
Google Scholar
Tranvik LJ, Porter KG, Sieburth JMcN (1989) Occurrence of bacterivory in Cryptomonas, a common freshwater phytoplankter. Oecologia 78:473–476. https://doi.org/10.1007/BF00378736
Article
PubMed
Google Scholar
Urrutia-Cordero P, Ekvall MK, Ratcovich J et al (2017) Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms. Freshw Biol 62:1869–1878. https://doi.org/10.1111/fwb.13027
Article
Google Scholar
Verbeek L, Gall A, Hillebrand H, Striebel M (2018) Warming and oligotrophication cause shifts in freshwater phytoplankton communities. Glob Change Biol 24:4532–4543. https://doi.org/10.1111/gcb.14337
Article
Google Scholar
Vijverberg J (1976) The effect of food quantity and quality on the growth, birth-rate and longevity of Daphnia hyalina Leydig. Hydrobiologia 51:99–108. https://doi.org/10.1007/BF00009824
Article
Google Scholar
von Elert E, Stampfl P (2000) Food quality for Eudiaptomus gracilis: the importance of particular highly unsaturated fatty acids. Freshw Biol 45:189–200. https://doi.org/10.1046/j.1365-2427.2000.00671.x
Article
Google Scholar
Ward BA, Follows MJ (2016) Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci 113:2958–2963. https://doi.org/10.1073/pnas.1517118113
CAS
Article
PubMed
PubMed Central
Google Scholar
Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487–495. https://doi.org/10.4319/lo.1997.42.3.0487
Article
Google Scholar
Watson SB, Whitton BA, Higgins SN et al (2015) Chapter 20—harmful algal blooms. In: Wehr JD, Sheath RG, Kociolek JP (eds) Freshwater Algae of North America, 2nd edn. Academic Press, Boston, pp 873–920
Chapter
Google Scholar
Wilken S, Soares M, Urrutia-Cordero P et al (2018) Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning. Limnol Oceanogr 63:S142–S155. https://doi.org/10.1002/lno.10728
Article
Google Scholar
Winder M, Reuter JE, Schladow SG (2009) Lake warming favours small-sized planktonic diatom species. Proc R Soc B Biol Sci 276:427–435. https://doi.org/10.1098/rspb.2008.1200
Article
Google Scholar
Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman and Hall/CRC, Boca Raton
Book
Google Scholar
Zubkov MV, Tarran GA (2008) High bacterivory by the smallest phytoplankton in the North Atlantic Ocean. Nature 455:224–226. https://doi.org/10.1038/nature07236
CAS
Article
PubMed
Google Scholar