Skip to main content

Advertisement

Log in

Foliar water uptake in arid ecosystems: seasonal variability and ecophysiological consequences

  • Physiological ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Foliar water uptake (FWU) has been reported for different species across several ecosystems types. However, little attention has been given to arid ecosystems, where FWU during dew formation or small rain events could ameliorate water deficits. FWU and their effects on leaf water potential (ΨLeaf) were evaluated in grasses and shrubs exploring different soil water sources in a Patagonian steppe. Also, seasonal variability in FWU and the role of cell wall elasticity in determining the effects on ΨLeaf were assessed. Eleven small rain events (< 8 mm) and 45 days with dew formation were recorded during the study period. All species exhibited FWU after experimental wetting. There was a large variability in FWU across species, from 0.04 mmol m−2 s−1 in species with deep roots to 0.75 mmol m−2 s−1 in species with shallow roots. Species-specific mean FWU rates were positively correlated with mean transpiration rates. The increase in ΨLeaf after leaf wetting varied between 0.65 MPa and 1.67 MPa across species and seasons. The effects of FWU on ΨLeaf were inversely correlated with cell wall elasticity. FWU integrated over both seasons varied between 28 mol m−2 in species with deep roots to 361 mol m−2 in species with shallow roots. Taking into account the percentage of coverage of each species, accumulated FWU represented 1.6% of the total annual transpiration of grasses and shrubs in this ecosystem. Despite this low FWU integrated over time compared to transpiration, wetting leaves surfaces can help to avoid larger water deficit during the dry season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):67

    Article  Google Scholar 

  • Berry ZC, Smith WK (2013) Ecophysiological importance of cloud immersion in a relic spruce–fir forest at elevational limits, southern Appalachian Mountains, USA. Oecologia 173(3):637–648

    Article  PubMed  Google Scholar 

  • Berry ZCC, Emery NC, Gotsch SG, Goldsmith GR (2019) Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell Environ 42:410–423

    Article  CAS  Google Scholar 

  • Boanares D, Ferreira BG, Kozovits AR, Sousa HC, Isaias RMS, França MGC (2018) Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain. Plant Physiol Biochem 122:57–64. https://doi.org/10.1016/j.plaphy.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  • Bradford JB, Schlaepfer DR, Lauenroth WK, Burke IC (2014) Shifts in plant functional types have time-dependent and regionally variable impacts on dryland ecosystem water balance. J Ecol 102(6):1408–1418

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees. Trees Struct Funct 19:296–304

    Article  Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Arce ME (2009) Soil water availability as determinant of the hydraulic architecture in Patagonian woody species. Oecologia 160:631–641

    Article  PubMed  Google Scholar 

  • Bucci SJ, Scholz FG, Iogna PA, Goldstein G (2011) Economía de agua de especies arbustivas de las Estepas Patagónicas. Ecol Austral 21(1):43–60

    Google Scholar 

  • Bucci SJ, Scholz FG, Peschiutta ML, Arias NS, Meinzer FC, Goldstein G (2013) The stem xylem of P atagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots. Plant, Cell Environ 36(12):2163–2174

    Article  CAS  Google Scholar 

  • Burgess SSO, Dawson TE (2004) The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell Environ 27:1023–1034

    Article  Google Scholar 

  • Burkhardt J (2010) Hygroscopic particles on leaves: nutrients or desiccants? Ecol Monogr 80:369–399

    Article  Google Scholar 

  • Burkhardt J, Basi S, Pariyar S, Hunsche M (2012) Stomatal penetration by aqueous solutions—an update involving leaf surface particles. New Phytol 196:774–787. https://doi.org/10.1111/j.1469-8137.2012.04307.x

    Article  CAS  PubMed  Google Scholar 

  • Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cassana FF, Eller CB, Oliveira RS, Dillenburg LR (2016) Effects of soil water availability on foliar water uptake of Araucaria angustifolia. Plant Soil 399:147–157. https://doi.org/10.1007/s11104-015-2685-0

    Article  CAS  Google Scholar 

  • Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankhla N, Popp M, Jones HG (1998) The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J Exp Bot 49:967–977

    Article  CAS  Google Scholar 

  • Eller CB, Lima AL, Oliveira RS (2013) Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae). New Phytol 199(1):151–162. https://doi.org/10.1111/nph.12248

    Article  CAS  PubMed  Google Scholar 

  • Fernández V, Sancho-Knapik D, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A, Gil-Pelegrín E (2014) Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol 166(1):168–180. https://doi.org/10.1104/pp.114.242040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández V, Bahamonde HA, Peguero-Pina JJ, Gil-Pelegrín E, Sancho-Knapik D, Gil L, Goldbach HE, Eichert T (2017) Physico-chemical properties of plant cuticles and their functional and ecological significance. J Exp Bot 68(19):5293–5306. https://doi.org/10.1093/jxb/erx302

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith GR, Matzke NJ, Dawson TE (2013) The incidence and implications of clouds for cloud forest plant water relations. Ecol Lett 16(3):307–314. https://doi.org/10.1111/ele.12039

    Article  PubMed  Google Scholar 

  • Golluscio RA, Sala OE, Lauenroth WK (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115(1–2):17–25

    Article  CAS  PubMed  Google Scholar 

  • Golluscio RA, Escalada VS, Pérez J (2009) Minimal plant responsiveness to summer water pulses: ecophysiological constraints of three species of semiarid Patagonia, Rangeland. Ecol Manag 62(2):171–178

    Google Scholar 

  • Gong XW, Lü GH, He XM, Sarkar B, Yang XD (2019) High air humidity causes atmospheric water absorption via assimilating branches in the deep-rooted tree Haloxylon ammodendron in an arid desert region of Northwest China. Front Plant Sci 10:573

    Article  PubMed Central  PubMed  Google Scholar 

  • Guzmán-Delgado P, Mason Earles J, Zwieniecki MA (2018) Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective. Plant, Cell Environ 41(8):1886–1894

    Article  Google Scholar 

  • Holanda AER, Souza BC, Carvalho ECD, Oliveira RS, Martins FR, Muniz CR, Costa RC, Soares AA (2019) How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? Plant Biol 21(6):1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometr J 50(3):346–363

    Article  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47(305):1813–1832

    Article  CAS  Google Scholar 

  • Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57(11):2493–2499. https://doi.org/10.1093/jxb/erl017

    Article  CAS  PubMed  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2014) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8(3):480–492. https://doi.org/10.1002/eco.1518

    Article  Google Scholar 

  • Kubiske ME, Abrams MD (1991) Seasonal, diurnal and rehydration induced variation of pressure-volume relationships in Pseudotsuga menziesii. Physiol Plant 83:107–116

    Article  Google Scholar 

  • Limm EB, Dawson TE (2010) Polystichum munitum (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. Am J Bot 97(7):1121–1128. https://doi.org/10.3732/ajb.1000081

    Article  PubMed  Google Scholar 

  • Limm EB, Simonin KA, Bothman AG, Dawson TE (2009) Foliar water uptake: a common water acquisition strategy for plants of the redwood forest. Oecologia 161(3):449–459. https://doi.org/10.1007/s00442-009-1400-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin CE, Von Willert DJ (2000) Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol 2(2):229–242. https://doi.org/10.1055/s-2000-9163

    Article  Google Scholar 

  • Mason Earles J, Sperling O, Silva LC, McElrone AJ, Brodersen CR, North MP, Zwieniecki MA (2016) Bark water uptake promotes localized hydraulic recovery in coastal redwood crown. Plant, Cell Environ 39(2):320–328

    Article  CAS  Google Scholar 

  • Matos IS, Rosado HP (2016) Retain or repel? Droplet volumen does matter when measuring leaf wetness traits. Ann Bot 117:1045–1052

    Article  PubMed Central  PubMed  Google Scholar 

  • Mayr S, Schmid P, Laur J, Rosner S, Charra-Vaskou K, Damon B, Hacke UG (2014) Uptake of water via branches helps timberline conifers refill embolized xylem in late winter. Plant Physiol 164(4):1731–1740. https://doi.org/10.1104/pp.114.236646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadezhdina N, David TS, David JS, Ferreira MI, Dohnal M, Tesař M, Gartner K, Leitgeb E, Nadezhdin V, Cermak J, Jimenez MS (2010) Trees never rest: the multiple facets of hydraulic redistribution. Ecohydrology 3(4):431–444

    Article  Google Scholar 

  • Naithani KJ, Ewers BE, Pendall E (2012) Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. J Hydrol 464:176–185

    Article  Google Scholar 

  • Nguyen HT, Meir P, Wolfe J, Mencuccini M, Ball MC (2017) Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure–volume relationship. Plant, Cell Environ 40(7):1021–1038. https://doi.org/10.1111/pce.12788

    Article  CAS  Google Scholar 

  • Niu F, Duan D, Chen J, Xiong P, Zhang H, Wang Z, Xu B (2016) Eco-physiological responses of dominant species to watering in a natural grassland community on the semi-arid Loess Plateau of China. Front Plant Sci 7:663

    PubMed  PubMed Central  Google Scholar 

  • Paruelo JM, Jobbagy G, Sala OE (1998) Biozones of Patagonia (Argentina). Ecol Austral 8:145–153

    Google Scholar 

  • Pereyra DA (2020). Efectos del pastoreo sobre la dinámica de agua en el suelo y el intercambio de agua y CO2 en la estepa patagónica. PhD Thesis. Universidad del Comahue, Argentina

  • Pereyra DA, Bucci SJ, Arias NS, Ciano N, Cristiano PM, Goldstein G, Scholz FG (2017) Grazing increases evapotranspiration without the cost of lowering soil water storages in arid ecosystems. Ecohydrology 2017:e1850. https://doi.org/10.1002/eco.1850

    Article  Google Scholar 

  • Pina ALCB, Zandavalli RB, Oliveira RS, Martins FR, Soares AA (2016) Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region. Funct Plant Biol 43:851–861

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2018) nlme: linear and nonlinear mixed effects models. R package version 3.1-137, https://CRAN.R-project.org/package=nlme

  • R Development Core Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna

    Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Rundel PW (1982) Water uptake by organs other than roots. Encyclopedia of plant physiology, vol 12B. Springer, Berlin, pp 111–134

    Google Scholar 

  • Scholz FG, Bucci SJ, Arias NS, Meinzer FC, Goldstein G (2012) Osmotic and elastic adjustments in cold desert shrubs differing in rooting depth: coping with drought and subzero temperatures. Oecologia 170:885–897. https://doi.org/10.1007/s00442-012-2368-y

    Article  PubMed  Google Scholar 

  • Schreel JDM, Steppe K (2018) Analysis of sap flow dynamics in saplings with mini- HFD (heat field deformation) sensors. Acta Hortic 1222:161–166. https://doi.org/10.17660/ActaHortic.2018.1222.33

    Article  Google Scholar 

  • Simonin KA, Santiago LS, Dawson TE (2009) Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit. Plant, Cell Environ 32(7):882–892. https://doi.org/10.1111/j.1365-3040.2009.01967.x

    Article  Google Scholar 

  • Steppe K, Vandegehuchte MW, Van de Wal BA, Hoste P, Guyot A, Lovelock CE, Lockington DA (2018) Direct uptake of canopy rainwater causes turgor-driven growth spurts in the mangrove Avicennia marina. Tree Physiol 38(7):979–991

    Article  CAS  PubMed  Google Scholar 

  • Touchette BW, Marcus SE, Adams EC (2014) Bulk elastic moduli and solute potentials in leaves of freshwater, coastal and marine hydrophytes. Are marine plants more rigid? AoB Plants. https://doi.org/10.1093/aobpla/plu014

    Article  PubMed  PubMed Central  Google Scholar 

  • Tyree MT, Richter H (1981) Alternative methods of analyzing water potential isotherms: some cautions and clarifications. J Exp Bot 32:643–653

    Article  Google Scholar 

  • Vaadia Y, Waisel Y (1963) Water absorption by aerial organs of plants. Physiol Plant 16:44–51. https://doi.org/10.1111/j.1399-3054.1963.tb08287.x

    Article  CAS  Google Scholar 

  • Wang X, Xiao H, Cheng Y, Ren J (2016) Leaf epidermal water absorbing scales and their absorption of unsaturated atmospheric water in Reaumuria soongorica, a desert plant from the northwest arid region of China. J Arid Environ 128:17–29. https://doi.org/10.1016/j.jaridenv.2016.01.005

    Article  Google Scholar 

  • Yan X, Zhou M, Dong X, Zou S, Xiao H, Ma XF (2015) Molecular mechanisms of foliar water uptake in a desert tree. AoB Plants 7:plv129

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from Fondo para la Promoción Científica y Tecnológica (FONCyT; Grant PICT 2013-2426, PICT 2016-3019) and Consejo Nacional de Investigaciones Científicas y Técnicas (Grant No. PUE 22920180100033). We thank the staff of Instituto Nacional de Tecnologia Agropecuaria (INTA) for allowing the access and assistance in the Rio Mayo Experimental Field. This work complies with Argentinian law.

Author information

Authors and Affiliations

Authors

Contributions

AC, SJB and FGS formulated the idea and designed the experiments. AC, LCS and DAP performed the experiments, AC analyzed the data, SJB and AC wrote the manuscript, FGS and GG contributed critically to the drafts. All authors contributed to and gave approval for the final version.

Corresponding author

Correspondence to Sandra J. Bucci.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Susanne Schwinning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 29 kb)

Supplementary material 2 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallaro, A., Carbonell Silleta, L., Pereyra, D.A. et al. Foliar water uptake in arid ecosystems: seasonal variability and ecophysiological consequences. Oecologia 193, 337–348 (2020). https://doi.org/10.1007/s00442-020-04673-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-020-04673-1

Keywords

Navigation