Aqvist SEG (1951a) Amino acid interrelationships during growth, studied with N15-labeled glycine in regenerating rat liver. Acta Chem Scand 5:1065–1073. doi:10.3891/acta.chem.scand.05-1065
CAS
Article
Google Scholar
Aqvist SEG (1951b) Metabolic interrelationships among amino acids studied with isotopic nitrogen. Acta Chem Scand 5:1046–1064. doi:10.3891/acta.chem.scand.05-1046
Article
Google Scholar
Araujo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14:948–958. doi:10.1111/j.1461-0248.2011.01662.x
PubMed
Article
Google Scholar
Bent KJ (1964) Significance of the amino acid pool in nitrogen metabolism of Penicillium griseofulvum. Biochem J 92:280–289. doi:10.1042/bj0920280
CAS
PubMed
PubMed Central
Article
Google Scholar
Bertolo RF, Burrin DG (2008) Comparative aspects of tissue glutamine and proline metabolism. J Nutr 138:2032S–2039S
CAS
PubMed
Google Scholar
Bird MI, Nunn PB (1983) Metabolic homoeostasis of l-threonine in the normally-fed rat: importance of liver threonine dehydrogenase activity. Biochem J 214:687–694. doi:10.1042/bj2140687
CAS
PubMed
PubMed Central
Article
Google Scholar
Blom HJ, Boers GHJ, Vandenelzen J, Gahl WA, Tangerman A (1989) Transamination of methionine in humans. Clin Sci 76:43–49. doi:10.1042/cs0760043
CAS
PubMed
Article
Google Scholar
Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42: 411–440. doi:10.1146/annurev-ecolsys-102209-144726
Article
Google Scholar
Braun A, Vikari A, Windisch W, Auerswald K (2014) Transamination governs nitrogen isotope heterogeneity of amino acids in rats. J Agr Food Chem 62:8008–8013. doi:10.1021/jf502295f
CAS
Article
Google Scholar
Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130:988S–990S
CAS
PubMed
Google Scholar
Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S
CAS
PubMed
Google Scholar
Cammarata PS, Cohen PP (1950) The scope of the transamination reaction in animal tissues. J Biol Chem 187:439–452
CAS
PubMed
Google Scholar
Cantalapiedra-Hijar G, Ortigues-Marty I, Schiphorst A-M, Robins RJ, Tea I, Prache S (2016) Natural 15N abundance in key amino acids from lamb muscle: exploring a new horizon in diet authentication and assessment of feed efficiency in ruminants. J Agr Food Chem 64:4058–4067. doi:10.1021/acs.jafc.6b00967
CAS
Google Scholar
Carson NAJ (1974) Metabolic errors in lysine degradation. Clin Endocrinol Meta 3:71–86. doi:10.1016/S0300-595X(74)80026-5
CAS
Article
Google Scholar
Chalot M, Finlay RD, Ek H, Soderstrom B (1995) Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Exp Mycol 19:297–304. doi:10.1006/emyc.1995.1036
CAS
Article
Google Scholar
Chikaraishi Y, Kashiyama Y, Ogawa NO, Kitazato H, Ohkouchi N (2007) Metabolic control of nitrogen isotope composition of amino acids in macroalgae and gastropods: implications for aquatic food web studies. Mar Ecol Prog Ser 342:85–90. doi:10.3354/meps342085
CAS
Article
Google Scholar
Chikaraishi Y, Ogawa NO, Kashiyama Y, Takano Y, Suga H, Tomitani A, Miyashita H, Kitazato H, Ohkouchi N (2009) Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol Oceanogr Meth 7:740–750. doi:10.4319/lom.2009.7.740
CAS
Article
Google Scholar
Chikaraishi Y, Ogawa NO, Doi H, Ohkouchi N (2011) 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: a case study of terrestrial insects (bees, wasps, and hornets). Ecol Res 26:835–844. doi:10.1007/s11284-011-0844-1
Article
Google Scholar
Chikaraishi Y, Steffan SA, Ogawa NO, Ishikawa NF, Sasaki Y, Tsuchiya M, Ohkouchi N (2014) High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecol Evol 4:2423–2449. doi:10.1002/ece3.1103
PubMed
PubMed Central
Article
Google Scholar
Cooper AJL (1983) Biochemistry of sulfur-containing amino-acids. Annu Rev Biochem 52:187–222. doi:10.1146/annurev.bi.52.070183.001155
CAS
PubMed
Article
Google Scholar
Cooper AJL, Nieves E, Coleman A, Filc-DeRicco S, Gelbard AS (1987) Short-term metabolic fate of 13N ammonia in rat liver in vivo. J Biol Chem 262:1073–1080
CAS
PubMed
Google Scholar
Cooper AJL, Nieves E, Rosenspire KC, Filc-DeRicco S, Gelbard AS, Brusilow SW (1988) Short-term metabolic fate of 13N-labeled glutamate, alanine, and glutamine (amide) in rat liver. J Biol Chem 263:12268–12273
CAS
PubMed
Google Scholar
Coote JG, Hassall H (1973) Degradation of l-histidine, imidazolyl-l-lactate and imidazolylpropionate by Pseudomonas testosteroni. Biochem J 132:409–422. doi:10.1042/bj1320409
CAS
PubMed
PubMed Central
Article
Google Scholar
Dalerum F, Angerbjorn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658. doi:10.1007/s00442-005-0118-0
CAS
PubMed
Article
Google Scholar
Darmaun D, Matthews DE, Bier DM (1986) Glutamine and glutamate kinetics in humans. Am J Physiol 251:E117–E126
CAS
PubMed
Google Scholar
Elderfield H (2002) Foraminiferal Mg/Ca paleothermometry: expected advances and unexpected consequences. Geochim Cosmochim Act 66:A213 (abstr.)
Elliott DF, Neuberger A (1950) The irreversibility of the deamination of threonine in the rabbit and rat. Biochem J 46:207–210. doi:10.1042/bj0460207
CAS
PubMed
PubMed Central
Article
Google Scholar
Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955. doi:10.1146/annurev.bi.44.070175.004441
CAS
PubMed
Article
Google Scholar
Fellows FCI, Lewis MHR (1973) Lysine metabolism in mammals. Biochem J 136:329–334. doi:10.1042/bj1360329
CAS
PubMed
PubMed Central
Article
Google Scholar
Fern EB, Garlick PJ (1976) Compartmentation of albumin and ferritin synthesis in rat liver in vivo. Biochem J 156:189–192. doi:10.1042/bj1560189
CAS
PubMed
PubMed Central
Article
Google Scholar
Fern EB, Garlick PJ, Waterlow JC (1985) Apparent compartmentation of body nitrogen in one human subject: its consequences in measuring the rate of whole-body protein synthesis with 15N. Clin Sci 68:271–282. doi:10.1042/cs0680271
CAS
PubMed
Article
Google Scholar
Fogel ML, Tuross N, Johnson BJ, Miller GH (1997) Biogeochemical record of ancient humans. Org Geochem 27:275–287. doi:10.1016/S0146-6380(97)00060-0
CAS
Article
Google Scholar
Fuller MF, Reeds PJ (1998) Nitrogen cycling in the gut. Annu Rev Nutr 18:385–411. doi:10.1146/annurev.nutr.18.1.385
CAS
PubMed
Article
Google Scholar
Gaebler OH, Vitti TG, Vukmirovich R (1966) Isotope effects in metabolism of 14N and 15N from unlabeled dietary proteins. Can J Biochem 44:1249–1257. doi:10.1139/o66-142
CAS
PubMed
Article
Google Scholar
Germain LR, Koch PL, Harvey J, McCarthy MD (2013) Nitrogen isotope fractionation in amino acids from harbor seals: implications for compound-specific trophic position calculations. Mar Ecol Prog Ser 482:265–277. doi:10.3354/meps10257
CAS
Article
Google Scholar
Gorres KL, Raines RT (2010) Prolyl 4-hydroxylase. Crit Rev Biochem Mol Biol 45:106–124. doi:10.3109/10409231003627991
CAS
PubMed
PubMed Central
Article
Google Scholar
Gruhn K (1987) Zur Verwertung von 15N-markiertem Harnstoff bei der Legehenne. 7. Mitteilung: 15N-Inkorporation in die Aminosaüren verschiedener Muskelarten. Arch Tierernahr 37:47–61. doi:10.1080/17450398709425332
CAS
PubMed
Article
Google Scholar
Hammerschlag-Peyer CM, Yeager LA, Araujo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One. doi:10.1371/journal.pone.0027104
PubMed
PubMed Central
Google Scholar
Hare PE, Fogel ML, Stafford TW Jr, Mitchell AD, Hoering TC (1991) The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J Archaeol Sci 18:277–292. doi:10.1016/0305-4403(91)90066-X
Article
Google Scholar
Harper AE, Zapalowski C (1981) Metabolism of branched chain amino acids. In: Waterlow JC, Stephen JML (eds) Nitrogen metabolism in man. Applied Science Publishers, London and New Jersey, pp 97–115
Google Scholar
Hertz E, Trudel M, Cox MK, Mazumder A (2015) Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol Evol 5:4829–4839. doi:10.1002/ece3.1738
PubMed
PubMed Central
Article
Google Scholar
Hoen DK, Kim SL, Hussey NE, Wallsgrove NJ, Drazen JC, Popp BN (2014) Amino acid 15N trophic enrichment factors of four large carnivorous fishes. J Exp Mar Biol Ecol 453:76–83. doi:10.1016/j.jembe.2014.01.006
CAS
Article
Google Scholar
Hoskin SO, Gavet S, Milne E, Lobley GE (2001) Does glutamine act as a substrate for transamination reactions in the liver of fed and fasted sheep? Br J Nutr 85:591–597. doi:10.1079/BJN2001332
CAS
PubMed
Article
Google Scholar
Hudson RC, Daniel RM (1993) L-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Phys B 106B:767–792. doi:10.1016/0305-0491(93)90031-Y
CAS
Article
Google Scholar
Iwata K, Deguchi M (1995) Metabolic fate and distribution of 15N-ammonia in an ammonotelic amphibious fish, Periophthalmus modestus, following immersion in 15N-ammonium sulfate—a long term experiment. Zool Sci 12:175–184. doi:10.2108/zsj.12.175
CAS
Article
Google Scholar
Jackson AA (1983) Amino-acids—essential and non-essential. Lancet 321:1034–1037. doi:10.1016/S0140-6736(83)92656-9
Article
Google Scholar
Jackson AA, Golden MHN (1980) [15N]Glycine metabolism in normal man: the metabolic alpha-amino-nitrogen pool. Clin Sci 58:517–522. doi:10.1042/cs0580517
CAS
PubMed
Article
Google Scholar
Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654. doi:10.1038/35036627
CAS
PubMed
Article
Google Scholar
Kacser H, Burns JA (1973) The control of flux. Sym Soc Exp Biol 27:65–104
CAS
Google Scholar
Kacser H, Burns JA, Fell DA (1995) The control of flux. Biochem Soc T 23:341–366. doi:10.1042/bst0230341
CAS
Article
Google Scholar
Kikuchi G (1973) The glycine cleavage system: composition, reaction mechanism, and physiological significance. Mol Cell Biochem 1:169–187. doi:10.1007/BF01659328
CAS
PubMed
Article
Google Scholar
Krempf M, Hoerr RA, Marks L, Young VR (1990) Phenylalanine flux in adult men: estimates with different tracers and route of administration. Metabolism 39:560–562. doi:10.1016/0026-0495(90)90018-8
CAS
PubMed
Article
Google Scholar
Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev Camb Philos Soc 87:545–562. doi:10.1111/j.1469-185X.2011.00208.x
PubMed
Article
Google Scholar
Layman CA, Newsome SD, Crawford TG (2015) Individual-level niche specialization within populations: emerging areas of study. Oecologia 178:1–4. doi:10.1007/s00442-014-3209-y
PubMed
Article
Google Scholar
Lehmann WD, Heinrich HC (1985) Oral versus intravenous l-phenylalanine loading compared by simultaneous application of l-[2H5] and l-[15N]phenylalanine. Clin Chim Acta 147:261–266. doi:10.1016/0009-8981(85)90208-6
CAS
PubMed
Article
Google Scholar
Lorrain A, Graham B, Menard F, Popp B, Bouillon S, van Breugel P, Cherel Y (2009) Nitrogen and carbon isotope values of individual amino acids: a tool to study foraging ecology of penguins in the Southern Ocean. Mar Ecol Prog Ser 391:293–306. doi:10.3354/meps08215
CAS
Article
Google Scholar
Macko SA, Estep MLF, Engel MH, Hare PE (1986) Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochim Cosmochim Act 50:2143–2146. doi:10.1016/0016-7037(86)90068-2
CAS
Article
Google Scholar
Macko SA, Fogel ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol (Isot Geosci Sect) 65:79–92
CAS
Article
Google Scholar
Martínez del Rio C, Anderson-Sprecher R (2008) Beyond the reaction progress variable: the meaning and significance of isotopic incorporation data. Oecologia 156:765–772. doi:10.1007/s00442-008-1040-z
PubMed
Article
Google Scholar
Matthews DE (2007) An overview of phenylalanine and tyrosine kinetics in humans. J Nutr 137:1549S–1555S
CAS
PubMed
PubMed Central
Google Scholar
Matthews DE, Bier DM, Rennie MJ, Edwards RHT, Halliday D, Millward DJ, Clugston GA (1981a) Regulation of leucine metabolism in man: a stable isotope study. Science 214:1129–1131. doi:10.1126/science.7302583
CAS
PubMed
Article
Google Scholar
Matthews DE, Conway JM, Young VR, Bier DM (1981b) Glycine nitrogen metabolism in man. Metabolism 30:886–893. doi:10.1016/0026-0495(81)90067-6
CAS
PubMed
Article
Google Scholar
McClelland JW, Montoya JP (2002) Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83:2173–2180. doi:10.1890/0012-9658(2002)083[2173:tratni]2.0.co;2
McMahon K, McCarthy M (2016) Embracing variability in amino acid δ15N fractionation: mechanisms, implications, and applications for trophic ecology. Ecosphere. doi:10.1002/ecs2.1511
Google Scholar
McMahon KW, Polito MJ, Abel S, McCarthy MD, Thorrold SR (2015) Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol Evol 5:1278–1290. doi:10.1002/ece3.1437
PubMed
PubMed Central
Article
Google Scholar
Mehler AH, Tabor H (1953) Deamination of histidine to form urocanic acid in liver. J Biol Chem 201:775–784
CAS
PubMed
Google Scholar
Meltzer HL, Sprinson DB (1952) The synthesis of 4-C14, N15-l-threonine and a study of its metabolism. J Biol Chem 197:461–474
CAS
PubMed
Google Scholar
Metges CC, Petzke KJ (1997) Measurement of 15N/14N isotopic composition in individual plasma free amino acids of human adults at natural abundance by gas chromatography—combustion isotope ratio mass spectrometry. Anal Biochem 247:158–164. doi:10.1006/abio.1997.2037
CAS
PubMed
Article
Google Scholar
Metges CC, Petzke KJ, El-Khoury AE, Henneman L, Grant I, Bedri S, Regan MM, Fuller MF, Young VR (1999) Incorporation of urea and ammonia nitrogen into ileal and fecal microbial proteins and plasma free amino acids in normal men and ileostomates. Am J Clin Nutr 70:1046–1058
CAS
PubMed
Google Scholar
Millward DJ, Rivers JPW (1989) The need for indispensable amino acids: the concept of the anabolic drive. Diabetes Metab Rev 5:191–211. doi:10.1002/dmr.5610050207
CAS
PubMed
Article
Google Scholar
Naito YI, Chikaraishi Y, Ohkouchi N, Drucker DG, Bocherens H (2013a) Nitrogen isotopic composition of collagen amino acids as an indicator of aquatic resource consumption: insights from Mesolithic and Epipalaeolithic archaeological sites in France. World Archaeol 45:338–359. doi:10.1080/00438243.2013.820650
Article
Google Scholar
Naito YI, Chikaraishi Y, Ohkouchi N, Yoneda M (2013b) Evaluation of carnivory in inland Jomon hunter-gatherers based on nitrogen isotopic compositions of individual amino acids in bone collagen. J Archaeol Sci 40:2913–2923. doi:10.1016/j.jas.2013.03.012
CAS
Article
Google Scholar
National Research Council (1994) Nutrient requirements of poultry. Ninth Revised Edition, 1994. The National Academies Press, Washington, DC. doi:10.17226/2114
National Research Council (1995) Nutrient requirements of laboratory animals. Fourth Revised Edition, 1995. The National Academies Press, Washington, DC. doi:10.17226/4758
Neuberger A (1961) Aspects of the metabolism of glycine and of porphyrins. Biochem J 78:1–10. doi:10.1042/bj0780001
CAS
PubMed
PubMed Central
Article
Google Scholar
Newsome SD, del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/060150.1
Article
Google Scholar
Nielsen JM, Popp BN, Winder M (2015) Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia 178:631–642. doi:10.1007/s00442-015-3305-7
PubMed
Article
Google Scholar
O’Connell TC, Collins MJ (2017) Comment on “Ecological niche of Neanderthals from Spy Cave revealed by nitrogen isotopes of individual amino acids in collagen.” [J Hum Evol 93 (2016) 82-90]. J Hum Evol. doi:10.1016/j.jhevol.2017.05.006
O’Connell TC, Hedges REM (2001) Isolation and isotopic analysis of individual amino acids from archaeological bone collagen: a new method using RP-HPLC. Archaeometry 43:421–438. doi:10.1111/1475-4754.00025
Article
Google Scholar
Peregrin-Alvarez JM, Sanford C, Parkinson J (2009) The conservation and evolutionary modularity of metabolism. Genome Biol. doi:10.1186/gb-2009-10-6-r63
PubMed
PubMed Central
Google Scholar
Petzke KJ, Boeing H, Klaus S, Metges CC (2005) Carbon and nitrogen stable isotopic composition of hair protein and amino acids can be used as biomarkers for animal-derived dietary protein intake in humans. J Nutr 135:1515–1520
CAS
PubMed
Google Scholar
Popp BN, Graham BS, Olson RJ, Hannides CCS, Lott MJ, López-Ibarra GA, Galván-Magaña F, Fry B (2007) Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. In: Dawson T, Siegwolf R (eds) Stable isotopes as indicators of ecological change, vol 1. Elsevier/Academic, Amsterdam, pp 173–190. doi:10.1016/s1936-7961(07)01012-3
Chapter
Google Scholar
Poupin N, Mariotti F, Huneau J-F, Hermier D, Fouillet H (2014) Natural isotopic signatures of variations in body nitrogen fluxes: a compartmental model analysis. PLoS Comput Biol. doi:10.1371/journal.pcbi.1003865
PubMed
PubMed Central
Google Scholar
Revel HRB, Magasanik B (1958) Enzymatic degradation of urocanic acid. J Biol Chem 233:930–935
CAS
PubMed
Google Scholar
Richter G, Gruhn K (1977) Untersuchungen zum Protein- und Aminosaürenstoffwechsel der Legenhennen mit 15N-markiertem Kasein. 5. Mitteilung. 15N-Inkorporation in verschiedene Blutfraktionen sowie in deren Aminosaüren Lysin, Histidin und Arginin. Arch Tierernahr 27:49–55. doi:10.1080/17450397709440610
CAS
PubMed
Article
Google Scholar
Rodicio LP, Sternberg LDL, Walsh PJ (2003) Metabolic fate of exogenous 15NH4Cl in the gulf toadfish (Opsanus beta). Comp Biochem Phys C 136:157–164. doi:10.1016/S1532-0456(03)00196-0
Google Scholar
Schoeller DA (1999) Isotope fractionation: why aren’t we what we eat? J Archaeol Sci 26:667–673. doi:10.1006/jasc.1998.0391
Article
Google Scholar
Schoenheimer R (1942) The dynamic state of body constituents. Harvard University Press, Cambridge
Google Scholar
Schwarcz HP, Schoeninger MJ (1991) Stable isotopic analyses in human nutritional ecology. Yearb Phys Anthropol 34:283–321. doi:10.1002/ajpa.1330340613
Article
Google Scholar
Schwartz-Narbonne R, Longstaffe FJ, Metcalfe JZ, Zazula G (2015) Solving the woolly mammoth conundrum: amino acid 15N-enrichment suggests a distinct forage or habitat. Sci Rep. doi:10.1038/srep09791
PubMed
PubMed Central
Google Scholar
Seminoff JA, Benson SR, Arthur KE, Eguchi T, Dutton PH, Tapilatu RF, Popp BN (2012) Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids. PLoS One. doi:10.1371/journal.pone.0037403
PubMed
PubMed Central
Google Scholar
Snell K (1986) The duality of pathways for serine biosynthesis is a fallacy. Trends Biochem Sci 11:241–243. doi:10.1016/0968-0004(86)90184-2
CAS
Article
Google Scholar
Sprinson DB, Rittenberg D (1949) The rate of interaction of the amino acids of the diet with the tissue proteins. J Biol Chem 180:715–726
CAS
PubMed
Google Scholar
Steffan SA, Chikaraishi Y, Horton DR, Ohkouchi N, Singleton ME, Miliczky E, Hogg DB, Jones VP (2013) Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS One. doi:10.1371/journal.pone.0076152
Google Scholar
Steffan SA, Chikaraishi Y, Currie CR, Horn H, Gaines-Day HR, Pauli JN, Zalapa JE, Ohkouchi N (2015) Microbes are trophic analogs of animals. Proc Natl Acad Sci 112:15119–15124. doi:10.1073/pnas.1508782112
CAS
PubMed
PubMed Central
Article
Google Scholar
Stipanuk MH (1986) Metabolism of sulfur-containing amino-acids. Annu Rev Nutr 6:179–209. doi:10.1146/annurev.nu.06.070186.001143
CAS
PubMed
Article
Google Scholar
Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577. doi:10.1146/annurev.nutr.24.012003.132418
CAS
PubMed
Article
Google Scholar
Styring AK, Sealy JC, Evershed RP (2010) Resolving the bulk δ15N values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochim Cosmochim Act 74:241–251. doi:10.1016/j.gca.2009.09.022
CAS
Article
Google Scholar
Thomas SM, Crowther TW (2015) Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84:861–870. doi:10.1111/1365-2656.12326
PubMed
Article
Google Scholar
Torrallardonna D, Harris I, Coates ME, Fuller M (1996) Microbial amino acid synthesis and utilization in rats: incorporation of 15N from 15NH4Cl into lysine in the tissues of germ-free and conventional rats. Br J Nutr 76:689–700. doi:10.1079/BJN19960076
Article
Google Scholar
Tuross N, Fogel ML, Hare PE (1988) Variability in the preservation of the isotopic composition of collagen from fossil bone. Geochim Cosmochim Act 52:929–935. doi:10.1016/0016-7037(88)90364-X
CAS
Article
Google Scholar
Vander Zanden HB, Arthur KE, Bolten AB, Popp BN, Lagueux CJ, Harrison E, Campbell CL, Bjorndal KA (2013) Trophic ecology of a green turtle breeding population. Mar Ecol Prog Ser 476:237–249. doi:10.3354/meps10185
Article
Google Scholar
Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One. doi:10.1371/journal.pone.0116182
PubMed
PubMed Central
Google Scholar
Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. doi:10.1007/s00442-003-1270-z
PubMed
Article
Google Scholar
Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Roy Soc B-Biol Sci 268:1803–1810. doi:10.1098/rspb.2001.1711
CAS
Article
Google Scholar
Wallace CJA, Hedges REM (2016) Nitrogen isotopic discrimination in dietary amino acids: the threonine anomaly. Rapid Commun Mass Spectrom 30:2442–2446. doi:10.1002/rcm.7732
CAS
PubMed
Article
Google Scholar
Walsh DA, Sallach HJ (1966) Comparative studies on pathways for serine biosynthesis in animal tissues. J Biol Chem 241:4068
CAS
PubMed
Google Scholar
Waterlow JC (2006) Protein turnover. CABI, Wallingford. doi:10.1079/9780851996134.0000
Book
Google Scholar
Yoneyama T, Kamachi K, Yamaya T, Mae T (1993) Fractionation of nitrogen isotopes by glutamine synthetase isolated from spinach leaves. Plant Cell Physiol 34:489–491
CAS
Google Scholar
Young VR, Ajami AM (2000) Glutamate: an amino acid of particular distinction. J Nutr 130:892S–900S
CAS
PubMed
Google Scholar
Young VR, Borgonha S (2000) Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern. J Nutr 130:1841S–1849S
CAS
PubMed
Google Scholar