Oecologia

, Volume 183, Issue 3, pp 797–807 | Cite as

Tree leaf litter composition drives temporal variation in aquatic beetle colonization and assemblage structure in lentic systems

Community ecology – original research

Abstract

Tree leaf litter inputs to freshwater systems are a major resource and primary drivers of ecosystem processes and structure. Spatial variation in tree species distributions and forest composition control litter inputs across landscapes, but inputs to individual lentic habitat patches are determined by adjacent plant communities. In small, ephemeral, fishless ponds, resource quality and abundance can be the most important factor affecting habitat selection preferences of colonizing animals. We used a landscape of experimental mesocosms to assess how natural populations of aquatic beetles respond over time to variation in tree leaf litter composition (pine or hardwood). Patches with faster-decomposing hardwood leaf litter were initially colonized at higher rates than slower-decomposing pine pools by most species of Hydrophilidae, but this pattern reversed later in the experiment with higher colonization of pine pools by hydrophilids. Colonization did not differ between pine and hardwood for dytiscids and the small hydrophilid Paracymus, but there were distinct beetle assemblages between pine and hardwood patches both early and late in the experiment. Our data support the importance of patch quality and habitat selection as determinants of species abundances, richness, and community structure in freshwater aquatic systems, not only when new habitat patches are formed and initial conditions set, but as patches change due to interactions of processes such as decomposition with time.

Keywords

Aquatic–terrestrial linkage Community assembly Habitat selection Hydrophilidae Resource subsidies 

Notes

Acknowledgements

The University of Mississippi, the Henry L. and Grace Doherty Foundation, and the University of Mississippi Field Station provided support for this project. J. Bohenek provided helpful comments on the manuscript.

Author contribution statement

MRP conceived, designed, and performed the experiment and identified the beetles. MRP analyzed the data and wrote the manuscript with input from WJR.

References

  1. Abrams MD (2003) Where has all the white oak gone? Bioscience 53:927–939. doi:10.1641/0006-3568(2003)053[0927:WHATWO]2.0.CO;2CrossRefGoogle Scholar
  2. Alford RA, Wilbur HM (1985) Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66:1097–1105. doi:10.2307/1939161 CrossRefGoogle Scholar
  3. Anderson NH, Sedell JR (1979) Detritus processing by macroinvertebrates in stream ecosystems. Annu Rev Entomol 24:351–377. doi:10.1146/annurev.en.24.010179.002031 CrossRefGoogle Scholar
  4. Anderson MJ, Gorley RN, Clarke KR (2015) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  5. Batzer DP, Wissinger SA (1996) Ecology of insect communities in nontidal wetlands. Annu Rev Entomol 41:75–100. doi:10.1146/annurev.en.41.010196.000451 CrossRefPubMedGoogle Scholar
  6. Binckley CA, Resetarits WJ Jr. (2005) Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol Lett 1:370–374. doi:10.1098/rsbl.2005.0310 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Binckley CA, Resetarits WJ Jr. (2008) Oviposition behavior partitions aquatic landscapes along predation and nutrient gradients. Behav Ecol 19:552–557. doi:10.1093/beheco/arm164 CrossRefGoogle Scholar
  8. Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366. doi:10.1146/annurev.ecolsys.31.1.343 CrossRefGoogle Scholar
  9. Clarke KR, Gorley RN (2015) PRIMER v7: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  10. Deans RA, Chalcraft DR (2017) Matrix context and patch quality jointly determine diversity in a landscape-scale experiment. Oikos. doi:10.1111/oik.03809 Google Scholar
  11. Doerr VAJ, Barrett T, Doerr ED et al (2011) Connectivity, dispersal behaviour and conservation under climate change: a response to Hodgson et al. J Appl Ecol 48:143–147. doi:10.1111/j.1365-2664.2010.01899.x CrossRefGoogle Scholar
  12. Earl JE, Semlitsch RD (2013) Spatial subsidies, trophic state, and community structure: examining the effects of leaf litter input on ponds. Ecosystems 16:639–651. doi:10.1007/s10021-013-9639-2 CrossRefGoogle Scholar
  13. Egglishaw HJ (2011) The distributional relationship between the bottom fauna and plant detritus. J Anim Ecol 33:463–476. doi:10.2307/2566 CrossRefGoogle Scholar
  14. Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763 CrossRefGoogle Scholar
  15. Fairchild GW, Faulds AM, Matta JF (2000) Beetle assemblages in ponds: effects of habitat and site age. Freshw Biol 44:523–534. doi:10.1046/j.1365-2427.2000.00601.x CrossRefGoogle Scholar
  16. Fairchild GW, Cruz J, Faulds AM et al (2003) Microhabitat and landscape influences on aquatic beetle assemblages in a cluster of temporary and permanent ponds. J N Am Benthol Soc 22:224–240. doi:10.2307/1467994 CrossRefGoogle Scholar
  17. Fisher SG, Likens GE (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439. doi:10.2307/1942301 CrossRefGoogle Scholar
  18. Fretwell SD, Lucas HL (1970) On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor 19:16–36. doi:10.1007/BF01601953 CrossRefGoogle Scholar
  19. Jeffries M (1994) Invertebrate communities and turnover in wetland ponds affected by drought. Freshw Biol 32:603–612. doi:10.1111/j.1365-2427.1994.tb01151.x CrossRefGoogle Scholar
  20. Kok CJ, Vanderveld G (1994) Decomposition and macroinvertebrate colonization of aquatic and terrestrial leaf material in alkaline and acid still water. Freshw Biol 31:65–75. doi:10.1111/j.1365-2427.1994.tb00839.x CrossRefGoogle Scholar
  21. Kraus JM, Vonesh JR (2010) Feedbacks between community assembly and habitat selection shape variation in local colonization. J Anim Ecol 79:795–802. doi:10.1111/j.1365-2656.2010.01684.x PubMedGoogle Scholar
  22. Layton RJ, Voshell JR (1991) Colonization of new experimental ponds by benthic macroinvertebrates. Environ Entomol 20:110–117. doi:10.1093/ee/20.1.110 CrossRefGoogle Scholar
  23. LeRoy CJ, Marks JC (2006) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw Biol 51:605–617. doi:10.1111/j.1365-2427.2006.01512.x CrossRefGoogle Scholar
  24. Loreau M, Holt RD (2004) Spatial flows and the regulation of ecosystems. Am Nat 163:606–615. doi:10.1086/382600 CrossRefPubMedGoogle Scholar
  25. Maerz JC, Brown CJ, Chapin CT, Blossey B (2005) Can secondary compounds of an invasive plant affect larval amphibians? Funct Ecol 19:970–975. doi:10.1111/j.1365-2435.2005.01054.x CrossRefGoogle Scholar
  26. Marcarelli AM, Baxter CV, Mineau MM, Hall RO (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225. doi:10.1890/10-2240.1 CrossRefPubMedGoogle Scholar
  27. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780 CrossRefGoogle Scholar
  28. Meyer JL, Bruce WJ, Eggert SL (1998) Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1:240–249. doi:10.1007/s100219900019 CrossRefGoogle Scholar
  29. Minshall GW (1967) Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 48:139–149. doi:10.2307/1933425 CrossRefGoogle Scholar
  30. Mortelliti A, Amori G, Boitani L (2010) The role of habitat quality in fragmented landscapes: a conceptual overview and prospectus for future research. Oecologia 163:535–547. doi:10.1007/s00442-010-1623-3 CrossRefPubMedGoogle Scholar
  31. Ostrofsky ML (1997) Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J N Am Benthol Soc 16:750–759. doi:10.2307/1468168 CrossRefGoogle Scholar
  32. Pintar MR, Resetarits WJ Jr. (2017) Out with the old, in with the new: oviposition preference matches larval success in Cope’s Gray Treefrog, Hyla chrysoscelis. J Herpetol. doi:10.1670/16-019
  33. Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. doi:10.1146/annurev.ecolsys.28.1.289 CrossRefGoogle Scholar
  34. R Core Team (2015) R: a language and environment for statistical computingGoogle Scholar
  35. Reiskind MH, Greene KL, Lounibos LP (2009) Leaf species identity and combination affect performance and oviposition choice of two container mosquito species. Ecol Entomol 34:447–456. doi:10.1111/j.1365-2311.2008.01067.x.Leaf CrossRefPubMedPubMedCentralGoogle Scholar
  36. Resetarits WJ Jr. (1996) Oviposition site choice and life history evolution. Am Zool 36:205–215. doi:10.1093/icb/36.2.205 CrossRefGoogle Scholar
  37. Resetarits WJ Jr. Binckley CA (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90:869–876. doi:10.1890/08-0613.1 CrossRefPubMedGoogle Scholar
  38. Resetarits WJ Jr. Pintar MR (2016) Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles. Ecology 97:3517–3529. doi:10.1002/ecy.1593 CrossRefPubMedGoogle Scholar
  39. Resetarits WJ Jr. Wilbur HM (1989) Choice of oviposition site by Hyla chrysoscelis: role of predators and competitors. Ecology 70:220–228. doi:10.2307/1938428 CrossRefGoogle Scholar
  40. Richardson JS, Shaughnessy CR, Harrison PG (2004) Litter breakdown and invertebrate association with three types of leaves in a temperate rainforest stream. Arch für Hydrobiol 159:309–325. doi:10.1127/0003-9136/2004/0159-0309 CrossRefGoogle Scholar
  41. Rubbo MJ, Kiesecker JM (2004) Leaf litter composition and community structure: translating regional species changes into local dynamics. Ecology 85:2519–2525. doi:10.1890/03-0653 CrossRefGoogle Scholar
  42. Rubbo MJ, Cole JJ, Kiesecker JM (2006) Terrestrial subsidies of organic carbon support net ecosystem production in temporary forest ponds: evidence from an ecosystem experiment. Ecosystems 9:1170–1176. doi:10.1007/s10021-005-0009-6 CrossRefGoogle Scholar
  43. Rubbo MJ, Belden LK, Kiesecker JM (2008) Differential responses of aquatic consumers to variations in leaf-litter inputs. Hydrobiologia 605:37–44. doi:10.1007/s10750-008-9298-z CrossRefGoogle Scholar
  44. Schneider DW, Frost TM (1996) Habitat duration and community structure in temporary ponds. J N Am Benthol Soc 15:64–86. doi:10.2307/1467433 CrossRefGoogle Scholar
  45. Scott NA, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159. doi:10.1007/s004420050219 CrossRefGoogle Scholar
  46. Short RA, Canton SP, Ward JV (1980) Detrital processing and associated macroinvertebrates in a Colorado mountain stream. Ecology 61:727–732. doi:10.2307/1936741 CrossRefGoogle Scholar
  47. Smock LA, MacGregor CM (1988) Impact of the American chestnut blight on aquatic shredding macroinvertebrates. J North Am Benthol 7:212–221. doi:10.2307/1467421 CrossRefGoogle Scholar
  48. Stoler AB, Relyea RA (2011) Living in the litter: the influence of tree leaf litter on wetland communities. Oikos 120:862–872. doi:10.1111/j.1600-0706.2010.18625.x CrossRefGoogle Scholar
  49. Stoler AB, Relyea RA (2013) Bottom-up meets top-down: leaf litter inputs influence predator-prey interactions in wetlands. Oecologia 173:249–257. doi:10.1007/s00442-013-2595-x CrossRefPubMedGoogle Scholar
  50. Stoler AB, Burke DJ, Relyea RA (2016) Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. Ecology. doi:10.1890/15-1786.1 PubMedGoogle Scholar
  51. Swan CM, Palmer MA (2006) Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147:469–478. doi:10.1007/s00442-005-0297-8 CrossRefPubMedGoogle Scholar
  52. Vonesh JR, Kraus JM, Rosenberg JS, Chase JM (2009) Predator effects on aquatic community assembly: disentangling the roles of habitat selection and post-colonization processes. Oikos 118:1219–1229. doi:10.1111/j.1600-0706.2009.17369.x CrossRefGoogle Scholar
  53. Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science. doi:10.1126/science.277.5322.102 PubMedGoogle Scholar
  54. Warton DI, Wright ST, Wang Y (2012) Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol Evol 3:89–101. doi:10.1111/j.2041-210X.2011.00127.x CrossRefGoogle Scholar
  55. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594. doi:10.1146/annurev.es.17.110186.003031 CrossRefGoogle Scholar
  56. Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425. doi:10.1146/annurev.es.15.110184.002141 CrossRefGoogle Scholar
  57. Wilbur HM (1997) Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78:2279–2302. doi:10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2CrossRefGoogle Scholar
  58. Williams DD (2005) Temporary forest pools: can we see the water for the trees? Wetl Ecol Manag 13:213–233. doi:10.1007/s11273-004-7517-6 CrossRefGoogle Scholar
  59. Williams BK, Rittenhouse TAG, Semlitsch RD (2008) Leaf litter input mediates tadpole performance across forest canopy treatments. Oecologia 155:377–384. doi:10.1007/s00442-007-0920-y CrossRefPubMedGoogle Scholar
  60. Yanoviak SP (1999) Effects of leaf litter species on macroinvertebrate community properties and mosquito yield in Neotropical tree hole microcosms. Oecologia 120:147–155. doi:10.1007/s004420050843 CrossRefGoogle Scholar
  61. Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230. doi:10.1146/annurev.ento.42.1.207 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations