Skip to main content

Advertisement

Log in

Differential responses of aquatic consumers to variations in leaf-litter inputs

  • Primary Research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Terrestrial support of aquatic food webs is becoming well established in the science of ecology. However, while terrestrial subsidies of energy have been shown to exert strong effects on aquatic food webs, it is less clear how variations in these subsidies, via natural or anthropogenic factors, will affect recipient ecosystems. To assess the influence of variations in terrestrial subsidies on an aquatic food web, we manipulated leaf-litter inputs in artificial ponds. Decreasing litter inputs did not affect any of the response variables in artificial ponds. This may be because the minimal amount of terrestrial carbon present combined with autochthonous production was enough to sustain the food web and/or the food web was altered in ways not detected by the experimental design. However, increasing leaf-litter inputs increased the percent survival and developmental rate of larval wood frogs (Rana sylvatica). Conversely, increasing litter input appeared to have no influence on zooplankton or salamander larvae. Increasing litter inputs also increased the dissolved organic carbon content and decreased the percent saturation of dissolved oxygen in artificial ponds. As system respiration in aquatic systems is frequently dominated by microbial respiration, we hypothesize that the effects of increasing litter input on wood frogs were the result of an increase food resources (i.e., microbes) for tadpoles. The lack of a response by salamander larvae and zooplankton may be due to the densities of zooplankton in tanks providing enough food for salamanders in all treatments, variation among specific zooplankton species in their ability to exploit these resources and transfer energy to salamanders, or omnivory among zooplankton offsetting the affects of leaf-litter inputs. Additional work is needed to determine the influence of litter inputs on zooplankton and salamanders in this community. These data demonstrate that variations in leaf-litter inputs can influence food web structure; however, the importance of these variations will likely be dependent upon the trophic position of various consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bonner, L. A., W. J. Diehl & R. Altig, 1997. Physical, chemical and biological dynamics of five temporary dystrophic forest pools in central Mississippi. Hydrobiologia 353: 77–89.

    Article  CAS  Google Scholar 

  • Caraco, N. F. & J. J. Cole, 2004. When terrestrial organic matter is sent down the river: the importance of allochthonous carbon inputs to the metabolism of lakes and rivers. In Polis, G. A., M. E. Power & G. R. Huxel (eds), Food Webs at the Landscape Level. University of Chicago Press, Chicago: 301–316.

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.

    Google Scholar 

  • Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.

    Article  Google Scholar 

  • del Giorgio, P. A., J. J. Cole & A. Cimbleris, 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385: 148–151.

    Article  Google Scholar 

  • Duarte, C. M. & S. Agusti, 1998. The CO2 balance of unproductive ecosystems. Science 281: 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Finzi, A. C., A. S. Allen, E. H. DeLucia, D. S. Ellsworth & W. H. Schlesinger, 2001. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82: 470–484.

    Google Scholar 

  • Gosner, K. L., 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16: 183–190.

    Google Scholar 

  • Hall, R. O., Jr., & J. L. Meyer, 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995–2012.

    Google Scholar 

  • Jansson, M., A. K. Bergstrom, P. Blomqvist & S. Drakare, 2000. Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81: 3250–3255.

    Google Scholar 

  • Johnson, B. R. & J. B. Wallace, 2005. Bottom-up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences 62: 301–311.

    Article  Google Scholar 

  • Kiesecker, J. M. & D. K. Skelly, 2001. Effects of disease and pond drying on gray tree frog growth, development, and survival. Ecology 82: 1956–1963.

    Google Scholar 

  • Knutson, R. M., 1997. An 18-year study of litterfall and litter decomposition in a northeast Iowa deciduous forest. American Midland Naturalist 138: 77–83.

    Article  Google Scholar 

  • Meyer, J. L., 1994. The microbial loop in flowing waters. Microbial Ecology 28: 195–199.

    Article  CAS  Google Scholar 

  • Meyer, J. L., J. B. Wallace & S. L. Eggert, 1998. Leaf litter as a source of dissolved organic carbon in streams. Ecosystems 1: 240–249.

    Article  CAS  Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van de Bogert, D. L. Bade, E. S. Kritzberg & D. Bastviken, 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427: 240–243.

    Google Scholar 

  • Petranka, J. W., 1998. Salamanders of the United States and Canada. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Petranka, J. W., A. W. Rushlow & M. E. Hopey, 1998. Predation by tadpoles of Rana sylvatica on embryos of Ambystoma maculatum: implications of ecological role reversals by Rana (predator) and Ambystoma (prey). Herpetologica 54: 1–13.

    Google Scholar 

  • Rubbo, M. J., J. J. Cole & J. M. Kiesecker, 2006. Terrestrial subsidies of organic carbon support net ecosystem production in temporary forest ponds: evidence from an ecosystem experiment. Ecosystems 9: 1170–1176.

    Article  CAS  Google Scholar 

  • Rubbo, M. J. & J. M. Kiesecker, 2004. Leaf-litter composition and community structure: translating regional species changes into local dynamics. Ecology 85: 2519–2525.

    Article  Google Scholar 

  • Skelly, D. K. & J. Golon, 2003. Assimilation of natural benthic substrates by two species of tadpoles. Herpetologica 59: 37–42.

    Article  Google Scholar 

  • Smith, C. K. & J. W. Petranka, 1987. Prey size-distributions and size-specific foraging success of Ambystoma larvae. Oecologia 71: 239–244.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.

    CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1997. Multiple trophic levels of a forest stream linked to terrestrial leaf litter inputs. Science 277: 102–104.

    Article  CAS  Google Scholar 

  • Wallace, J. B., S. L. Eggert, J. L. Meyer & J. R. Webster, 1999. Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs 69: 409–442.

    Google Scholar 

  • Watson, S. & A. P. Russell, 2000. A posthatching developmental staging table for the long-toed salamander, Ambystoma macrodactylum krausei. Amphibia-Reptilia 21: 143–154.

    Article  Google Scholar 

  • Werner, E. E. & B. R. Anholt, 1996. Predator-induced behavioral indirect effects: consequences to competitive interactions in anuran larvae. Ecology 77: 157–169.

    Article  Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer-Verlag, New York, NY.

    Google Scholar 

  • Wilbur, H. M., 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78: 2279–2302.

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Cole, D. Fischer, and S. Hazzard for assistance with sample analysis, and J. Rubbo, S. Storrs, S. Eckert, A. Schroeck, and J. Falkenbach for assistance during field work. This is a contribution to the Institute of Ecosystem Studies. Financial support was provided by the NIH/NSF Ecology of Infectious Disease Program (1R01ES11067-01 to JMK), the Department of Biology, Pennsylvania State University, and a Grant-in-Aid of research provided by Sigma-Xi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Rubbo.

Additional information

Handling editor: J. Cole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubbo, M.J., Belden, L.K. & Kiesecker, J.M. Differential responses of aquatic consumers to variations in leaf-litter inputs. Hydrobiologia 605, 37–44 (2008). https://doi.org/10.1007/s10750-008-9298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9298-z

Keywords

Navigation