Skip to main content
Log in

Massive turnover rates of fine root detrital carbon in tropical Australian mangroves

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m−2), low-intertidal Rhizophora (16.3 kg m−2) and high-intertidal Ceriops (mean 8.9 kg m−2), and were some of the highest on record. The first-order decay coefficients (day−1) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m−2 day−1), low Rhizophora (8.4 g C m−2 day−1) and high Ceriops (2.5 g C m−2 day−1). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50–200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albright LJ (1976) In situ degradation of mangrove tissues. NZ J Mar Freshwater Res 10:385–389

    Article  Google Scholar 

  • Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59–79

    Article  CAS  PubMed  Google Scholar 

  • Alongi DM (2009) The energetics of mangrove forests. Springer Science, Berlin

    Google Scholar 

  • Alongi DM (2011) Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environ Sci Policy 14:462–470

    Article  Google Scholar 

  • Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Manage 3:313–322

    Article  CAS  Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Article  Google Scholar 

  • Alongi DM, Ayukai T, Brunskill GJ, Clough BF, Wolanski E (1998) Sources, sinks, and export of organic carbon through a tropical, semi-enclosed delta (Hinchinbrook Channel, Australia). Mangr Salt Marsh 2:237–242

    Article  Google Scholar 

  • Alongi DM, Tirendi F, Clough BF (2000) Below-ground decomposition of organic matter in forests of Rhizophora spp. and Avicennia marina along the arid coast of Western Australia. Aquat Bot 68:97–122

    Article  Google Scholar 

  • Angelsen A, Brockhaus M, Sunderlin WD, Verchot LV (eds) (2012) Analysing REDD+: challenges and choices. CIFOR, Indonesia

    Google Scholar 

  • Boto KG, Wellington JT (1983) Phosphorus and nitrogen nutritional status of a northern Australian mangrove forest. Mar Ecol Prog Ser 11:63–69

    Article  Google Scholar 

  • Bouillon S (2011) Storage beneath mangroves. Nat Geosci 4:282–283

    Article  CAS  Google Scholar 

  • Bouillon S, Borges AV, Castaneda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013. doi:10.1029/2007GB003052

    Article  Google Scholar 

  • Briggs SV (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2:369–373

    Article  Google Scholar 

  • Bunt JS (1982) Studies of mangrove litter fall in tropical Australia. In: Clough BF (ed) Mangrove ecosystems in Australia. Australian National University Press, Canberra, pp 223–237

    Google Scholar 

  • Castaneda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SML (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the Florida coastal Everglades, USA. Ecosystems 14:1178–1195

    Article  CAS  Google Scholar 

  • Clough BF (1982) Mangrove ecosystems in Australia. Australian National University Press, Canberra

    Google Scholar 

  • Daniel P, Robertson AI (1990) Epibenthos of mangrove waterways and open embayments: community structure and the relationship between exported mangrove detritus and epifaunal standing stocks. Estuar Coast Shelf Sci 31:599–619

    Article  Google Scholar 

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  CAS  Google Scholar 

  • Duarte CM, Middleburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1–8

    Article  CAS  Google Scholar 

  • Fujimoto K, Imaya A, Tabuchi R, Kuramoto S, Utsugi H, Murofushi T (1999) Belowground carbon storage of Micronesian mangrove forests. Ecol Res 14:409–413

    Article  Google Scholar 

  • Gill AM, Tomlinson BP (1977) Studies on the growth of red mangrove (Rhizophora mangle L.) 4. The adult root system. Biotropica 9:145–155

    Article  Google Scholar 

  • Hackney CT, de la Cruz AA (1980) In situ decomposition of roots and rhizomes of two tidal marsh plants. Ecology 61:226–231

    Article  Google Scholar 

  • Harmon ME, Silver WL, Fasth B, Chen H, Burke IC, Parton WJ, Hart SC, Currie WS, LIDET (2009) Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison. Glob Change Biol 15:1320–1338

    Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513

    Article  PubMed  Google Scholar 

  • Hurteau MD, Hungate BA, Kock GW, North MP, Smith GR (2013) Aligning ecology and markets in the forest carbon cycle. Front Ecol Environ 11:37–42

    Article  Google Scholar 

  • Huxham M, Langat J, Tamooh F, Kennedy H, Mencuccini M, Skov MW, Kairo J (2010) Decomposition of mangrove roots: effects of location, nutrients, species identity and mix in a Kenyan forest. Estuar Coast Shelf Sci 88:135–142

    Article  Google Scholar 

  • Komiyama A, Ogino S, Aksornkoae S, Sabhasri S (1987) Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. J Trop Ecol 3:97–108

    Article  Google Scholar 

  • Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Ishihara S, Miyagi T (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. For Ecol Manage 139:127–134

    Article  Google Scholar 

  • Komiyama A, Ong JE, Poungparm S (2008) Allometry, biomass and productivity of mangrove forests: a review. Aq Bot 89:128–137

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219

    Article  CAS  Google Scholar 

  • Lovelock CE, Ruess RW, Feller IC (2011) CO2 efflux from cleared mangrove peat. PLoS One 6(6):e21279. doi:10.1371/journal.pone.0021279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahli Y, Doughty C, Galbraith D (2011) The allocation of ecosystem net primary productivity in tropical forests. Philosl Trans R Soc B 366:3225–3245. doi:10.1098/rstb.2011.0062

    Article  Google Scholar 

  • McKee KL, Faulkner PL (2000) Restoration of biogeochemical function in mangrove forests. Restor Ecol 8:247–259

    Article  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828

    Article  Google Scholar 

  • Muradian R, Kumar P (2009) Payment for ecosystem services and valuation: challenges and research gaps. In: Kumar P, Muradian R (eds) Payment for ecosystem services. Oxford University Press, New Delhi, pp 1–16

    Google Scholar 

  • Poret N, Twilley RR, Rivera-Monroy VH, Coronado-Molina C (2007) Belowground decomposition of mangrove roots in Florida Coastal Everglades. Estuar Coast 30:491–496

    Article  CAS  Google Scholar 

  • Rice JA (2007) Mathematical statistics and data analysis, 3rd edn. Thomson Higher Education, Belmont

    Google Scholar 

  • Risk MJ, Rhodes EG (1985) From mangroves to petroleum precursors: an example from tropical northeast Australia. Am Assoc Petr Geol Bull 69:1230–1240

    CAS  Google Scholar 

  • Robertson AI (1986) Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J Exp Mar Biol Ecol 102:237–248

    Article  Google Scholar 

  • Robertson AI, Daniel P (1989a) The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–198

    Article  Google Scholar 

  • Robertson AI, Daniel P (1989b) Decomposition and the annual flux of detritus from fallen timber in tropical mangrove forests. Limnol Oceanogr 34:640–646

    Article  CAS  Google Scholar 

  • Robertson AI, Dixon P (1993) Separating live and dead fine roots using colloidal silica: an example from mangrove forests. Plant Soil 157:151–154

    Article  Google Scholar 

  • Robertson AI, Alongi DM, Boto KG (1992) Food chains and carbon fluxes. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems. Coastal and estuarine studies no. 41. American Geophysical Union, Washington, DC, pp 293–326

    Chapter  Google Scholar 

  • Smith TJIII, Boto KG, Frusher SD, Giddens RL (1991) Keystone species and mangrove forest dynamics: the influence of burrowing by crabs on soil nutrient status and forest productivity. Estuar Coast Shelf Sci 33:419–432

    Article  CAS  Google Scholar 

  • Susilo A, Ridd PV, Severine T (2005) Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps. Wetl Ecol Manage 13:377–388

    Article  Google Scholar 

  • Tamooh F, Huxham M, Karachi M, Mencuccini M, Kairo JG, Kirui B (2008) Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. For Ecol Manage 256:1290–1297

    Article  Google Scholar 

  • Victor S, Golbuu Y, Wolanski E, Richmond RH (2004) Fine sediment trapping in two mangrove-fringed estuaries exposed to contrasting land-use intensities, Palau, Micronesia. Wetl Ecol Manage 12:277–283

    Article  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63:1636–1642

    Article  Google Scholar 

  • Wolanski E, Gardiner R (1981) Flushing of salt from mangrove swamps. Aust J Mar Freshwater Res 32:681–683

    Article  Google Scholar 

  • Wolanski E, Jones M, Bunt JS (1980) Hydrodynamics of a tidal creek-mangrove swamp system. Aust J Mar Freshwater Res 31:431–450

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Paul Dixon and Paul Daniel for help in all aspects of the field sampling and laboratory analyses. Cassie Payn and Irena Zagorskis performed the elemental analyses of root and sediment samples, and Kevin Murray provided advice on statistical matters.

Author contribution statement

A. I. R. conceived and designed the field sampling and experiments. A. I. R. and D. M. A. analysed the data. A. I. R. and D. M. A. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistar I. Robertson.

Additional information

Communicated by Jeremy Lichstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robertson, A.I., Alongi, D.M. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves. Oecologia 180, 841–851 (2016). https://doi.org/10.1007/s00442-015-3506-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3506-0

Keywords

Navigation