Skip to main content
Log in

Upscaling the niche variation hypothesis from the intra- to the inter-specific level

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The “niche variation hypothesis” (NVH) predicts that populations with wider niches should display higher among-individual variability. This prediction originally stated at the intra-specific level may be extended to the inter-specific level: individuals of generalist species may differ to a greater extent than individuals of a specialist species. We tested the NVH at intra- and inter-specific levels based on a large diet database of three large herbivore feces collected in the field and analyzed using DNA metabarcoding. The three herbivores (roe deer Capreolus capreolus, chamois Rupicapra rupicapra and mouflon Ovis musimon) are highly contrasted in terms of sociality (solitary to highly gregarious) and diet. The NVH at the intraspecific level was tested by relating, for the same population, diet breadth and inter-individual variation across the four seasons. Compared to null models, our data supported the NVH both at the intra- and inter-specific levels. Inter-individual variation of the diet of solitary species was not larger than in social species, although social individuals feed together and could therefore have more similar diets. Hence, the NVH better explained diet breadth than other factors such as sociality. The expansion of the population niche of the three species was driven by resource availability, and achieved by an increase in inter-individual variation, and the level of inter-individual variability was larger in the generalist species (mouflon) than in the specialist one (roe deer). This mechanism at the base of the NVH appears at play at different levels of biological organization, from populations to communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas F, Picot D, Merlet J, Cargnelutti B, Lourtet B, Angibault JM, Daufresne T, Aulagnier S, Verheyden H (2013) A typical browser, the roe deer, may consume substantial quantities of grasses in open landscapes. Eur J Wildl Res 59(1):69–75

    Article  Google Scholar 

  • Ainsworth CH, Kaplan IC, Levin PS, Mangel M (2010) A statistical approach for estimating fish diet compositions from multiple data sources: Gulf of california case study. Ecol Appl 20(8):2188–2202

    Article  PubMed  Google Scholar 

  • Araújo M, Gonzaga M (2007) Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav Ecol Sociobiol 61(12):1855–1863

    Article  Google Scholar 

  • Araújo MS, dos Reis SF, Giaretta AA, Machado G, Bolnick DI (2007) Intrapopulation diet variation in four frogs (Leptodactylidae) of the Brazilian Savannah. Copeia 4:855–865

    Article  Google Scholar 

  • Araújo M, Guimarães P Jr, Svanbäck R, Pinheiro A, Guimarães P, Reis S, Bolnick D (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89(7):1981–1993

    Article  PubMed  Google Scholar 

  • Araújo M, Bolnick D, Martinelli L, Giaretta A, Dos Reis S (2009) Individual-level diet variation in four species of Brazilian frogs. J Anim Ecol 78(4):848–856

    Article  PubMed  Google Scholar 

  • Araújo MS, Bolnick DI, Layman CA (2011) The ecological causes of individual specialisation. Ecol Lett 14(9):948–958

    Article  PubMed  Google Scholar 

  • Bertolino S, Di Montezemolo N, Bassano B (2009) Food–niche relationships within a guild of alpine ungulates including an introduced species. J Zool 277(1):63–69

    Article  Google Scholar 

  • Bolnick D, Yang L, Fordyce J, Davis J, Svanbäck R (2002) Measuring individual-level resource specialization. Ecology 83(10):2936–2941

    Article  Google Scholar 

  • Bolnick D, Svanbäck R, Fordyce J, Yang L, Davis J, Hulsey C, Forister M (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161(1):1–28

    Article  PubMed  Google Scholar 

  • Bolnick D, Svanbäck R, Araújo M, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci USA 104(24):10075–10079

  • Bolnick DI, Ingram T, Stutz WE, Snowberg LK, Lau OL, Paull JS (2010) Ecological release from interspecific competition leads to decoupled changes in population and individual niche width. Proc R Soc Lond B 277(1689):1789–1797

    Article  Google Scholar 

  • Boschi C, Nievergelt B (2003) The spatial patterns of alpine chamois (Rupicapra rupicapra rupicapra) and their influence on population dynamics in the Swiss National Park. Mamm Biol 68:16–30

  • Castle EJ (1956) The rate of passage of foodstuffs through the alimentary tract of the goat. Br J Nutr 10(02):115–125

    Article  CAS  PubMed  Google Scholar 

  • Chase JM, Kraft NJ, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2(2):art24

  • Clauss M, Lechner-Doll M, Streich W (2003) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. Oikos 102(2):253–262

    Article  Google Scholar 

  • Clavel J, Julliard R, Devictor V (2010) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9(4):222–228

    Article  Google Scholar 

  • Costa GC, Mesquita DO, Colli GR, Vitt LJ (2008) niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am Nat 172(6):868–877

    Article  PubMed  Google Scholar 

  • Cransac N, Gerard JF, Maublanc ML, Pépin D (1998) An example of segregation between age and sex classes only weakly related to habitat use in mouflon sheep (ovis gmelini). J Zool 244(03):371–378

    Article  Google Scholar 

  • Darmon G, Calenge C, Loison A, Jullien JM, Maillard D, Lopez JF (2012) Spatial distribution and habitat selection in coexisting species of mountain ungulates. Ecography 35(1):44–53

    Article  Google Scholar 

  • Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villeger S, Mouquet N (2009) Defining and measuring ecological specialization. J Appl Ecol 47(1):15–25

    Article  Google Scholar 

  • Duparc A, Redjadj C, Viard-Crétat F, Lavorel S, Austrheim G, Loison A (2012) Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl Veg Sci 16(2):305–316

  • Dzieciolowski R (1979) Structure and spatial-organization of deer populations. Acta Theriol 24(1–11):3–21

    Article  Google Scholar 

  • Ferrari S, Cribari-Neto F (2004) Beta regression for modelling rates and proportions. J Appl Stat 31:799–815

    Article  Google Scholar 

  • Fritz H, Loison A (2006) Large herbivores across biomes. In: Dannell K, Duncan O, Bergström R, Pastor R (eds) Large herbivores ecology, ecosystem dynamics and conservation. Cambridge Unversity Press, London, pp 19–49

  • Gerardo Herrera ML, Korine C, Fleming TH, Arad Z (2008) Dietary implications of intrapopulation variation in nitrogen isotope composition of an old world fruit bat. J Mammal 89(5):1184–1190

    Article  Google Scholar 

  • Hofmann R (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78(4):443–457

    Article  Google Scholar 

  • Hutchinson G (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jarman P (1974) The social organisation of antelope in relation to their ecology. Behaviour 48:215–267

    Article  Google Scholar 

  • Knudsen R, Amundsen P, Primicerio R, Klemetsen A, Sorensen P (2007) Contrasting niche-based variation in trophic morphology within arctic charr populations. Evol Ecol Res 9(6):1005–1021

    Google Scholar 

  • Martins E, Araújo M, Bonato V, Reis S (2008) Sex and season affect individual-level diet variation in the neotropical marsupial Gracilinanus microtarsus (didelphidae). Biotropica 40(1):132–135

    Google Scholar 

  • Pires MM, Martins EG, Araújo MS, Reis SF (2013) Between-individual variation drives the seasonal dynamics in the trophic niche of a neotropical marsupial. Austral Ecol 38:664–671

    Article  Google Scholar 

  • Pompanon F, Deagle B, Symondson W, Brown D, Jarman S, Taberlet P (2012) Who is eating what: diet assessment using next generation sequencing. Mol Ecol 21:1931–1950

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rayé G, Miquel C, Coissac E, Redjadj C, Loison A, Taberlet P (2011) New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecol Res 26(2):265–276

    Article  Google Scholar 

  • Redjadj C (2010) Etude inter-et intra-spécifique des variations spatio-temporelles de l’utilisation des ressources alimentaires au sein d’une communauté de grands herbivores de montagne. PhD thesis, Université de Grenoble, Grenoble

  • Redjadj C, Darmon G, Maillard D, Chevrier T, Bastianelli D, Verheyden H, Loison A, Saïd S (2014) Intra-and interspecific differences in diet quality and composition in a large herbivore community. PloS ONE 9(2):e84756

    Article  PubMed Central  PubMed  Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718

    Article  Google Scholar 

  • Roughgarden J (1974) niche width: biogeographic patterns among anolis lizard populations. Am Nat 108:429–442

    Article  Google Scholar 

  • Schoener TW (1968) The anolis lizards of bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Svanbäck R, Bolnick DI (2007) Intraspecific competition drives increased resource use diversity within a natural population. Proc R Soc Lond B 274(1611):839–844

    Article  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnl (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35(3):e14–e14

    Article  PubMed Central  PubMed  Google Scholar 

  • Tinker MT, Bentall G, Estes JA (2008) Food limitation leads to behavioral diversification and dietary specialization in sea otters. Proc Natl Acad Sci USA 105(2):560–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tur C, Vigalondo B, Trøjelsgaard K, Olesen JM, Traveset A (2014) Downscaling pollen–transport networks to the level of individuals. J Anim Ecol 83(1):306–317

    Article  PubMed  Google Scholar 

  • Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390

    Article  Google Scholar 

  • Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED, Vestergård M, Gussarova G, Haile J et al (2014) Fifty thousand years of arctic vegetation and megafaunal diet. Nature 506(7486):47–51

    Article  CAS  PubMed  Google Scholar 

  • Wilson M, Shmida A (1984) Measuring beta diversity with presence-absence data. J Ecol 72:1055–1064

    Article  Google Scholar 

  • Yoccoz N (2012) The future of environmental DNA in ecology. Mol Ecol 21(8):2031–2038

    Article  PubMed  Google Scholar 

  • Zaccarelli N, Bolnick DI, Mancinelli G (2013) Rinsp: an r package for the analysis of individual specialization in resource use. Methods Ecol Evol 4(11):1018–1023

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank J.-M. Jullien and T. Chevrier for collecting the feces during the animal captures and field workers for feces sampling in the field. We also thank ONCFS and CNRS for funding the barcoding analyses and the Natural Regional Park of Bauges massif for data provision.

Author contribution statement

AL, DM and SS originally developed the idea. MB, SI, NGY, AL analyzed the data and wrote the first draft of the manuscript. SI and NGY developed the mathematical model of a new null model. CM, PT, CR, DR developed the DNA metabarcoding methods and applied it on feces. CR performed the feces sampling, laboratory experiments (DNA metabarcoding on feces), database treatment and preliminary analyses. FB and EC performed the statistical analyses and the database treatment of DNA sequences. All authors commented and approved the ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie Bison.

Additional information

Communicated by Ilpo Kojola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bison, M., Ibanez, S., Redjadj, C. et al. Upscaling the niche variation hypothesis from the intra- to the inter-specific level. Oecologia 179, 835–842 (2015). https://doi.org/10.1007/s00442-015-3390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3390-7

Keywords

Navigation