Skip to main content
Log in

Mechanisms of density dependence in ducks: importance of space and per capita food

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The growth rate of populations usually varies over time, often in a density-dependent manner. Despite the large amount of literature on density dependence, relatively little is known of the mechanisms underlying the density-dependent processes affecting populations, especially per capita natality. We performed a 20-year study on the density dependence of brood production in two duck species differing in the stability of habitat use. Our study was conducted in a boreal watershed in southern Finland. We predicted that a diving duck common goldeneye Bucephala clangula, with more stable habitat use, would show stronger density dependence than a dabbling duck common teal Anas crecca. We investigated reproductive output in relation to the duck pair density per se as well as in relation to per capita food availability. As predicted, the reproductive output of the goldeneye showed a more density-dependent pattern than that of the teal. The number of goldeneye broods per pair decreased when the pair density increased. This was not the case with the teal. However, when the breeding success was measured by taking into account per capita food availability, both species showed density dependence. Our results imply that the occurrence of density dependent processes may vary even in sympatric ducks breeding in the same, relatively stable landscape. Our analysis also emphasizes that it is important to take into account per capita resource availability when studying the density dependence of breeding success. Both findings have important implications for the management and conservation of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson DR, Burnham KP (1976) Population ecology of the mallard: VI. The effects of exploitation on survival. Fish and Wildlife Service Resource Publication, US 128

    Google Scholar 

  • Bailey RO (1981) A theoretical approach to problems in waterfowl management. Trans N Am Wildl Nat Res Conf 46:58–71

    Google Scholar 

  • Balbontín J, Ferrer M (2008) Density-dependence by habitat heterogeneity: individual quality versus territory quality. Oikos 117:1111–1114

    Article  Google Scholar 

  • Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems, 4th edn. Blackwell Publishing, Oxford

    Google Scholar 

  • Boyce MS (1984) Restitution of r- and K-selection as a model of density-dependent natural selection. Annu Rev Ecol Evol Syst 15:427–447

    Google Scholar 

  • Brook BW, Bradshaw JA (2006) Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87:1445–1451

    Article  PubMed  Google Scholar 

  • Carrete M, Sánchez-Zapata JA, Tella JL, Gil-Sánchez MG, Moleón M (2006) Components of breeding performance in two competing species: habitat heterogeneity, individual quality and density-dependence. Oikos 112:680–690

    Article  Google Scholar 

  • Collett D (2003) Modelling Binary Data, 2dn edn. Chapman and Hall/CRC, London

    Google Scholar 

  • Coluccy JM, Yerkes T, Simpson R, Simpson JW, Armstrong L, Davis J (2008) Population dynamics of breeding mallards in the great lakes states. J Wildl Manage 72:1181–1187

    Article  Google Scholar 

  • Crête M, Courtois R (1997) Limiting factors might obscure population regulation of moose (Cervidae: Alces alces) in unproductive boreal forests. J Zool 242:765–781

    Article  Google Scholar 

  • Danell K, Sjöberg K (1977) Seasonal emergence of chironomids in relation to egglaying and hatching of ducks in a restored lake northern Sweden. Wildfowl 28:129–135

    Google Scholar 

  • Dhondt AA (2012) Interspecific competition in birds. Oxford University Press, Oxford

    Google Scholar 

  • Dhondt AA, Kempenaers B, Adriaensen F (1992) Density-dependent clutch size caused by habitat heterogeneity. J Anim Ecol 61:643–648

    Article  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (1992) Do intruding predators and trap position affect the reliability of catches in activity traps. Hydrobiologia 239:187–193

    Article  Google Scholar 

  • Elmberg J, Nummi P, Pöysä H, Sjöberg K (2003) Breeding success of sympatric dabbling ducks in relation to population density and food resources. Oikos 100:333–341

    Article  Google Scholar 

  • Elmberg J, Gunnarsson G, Pöysä H, Sjöberg K, Nummi P (2005) Within-season sequential density dependence regulates breeding success in mallards Anas platyrhynchos. Oikos 108:582–590

    Article  Google Scholar 

  • Ferrer M, Donazar JA (1996) Density-dependent fecundity by habitat heterogeneity in an increasing population of Spanish imperial eagles. Ecology 77:69–74

    Article  Google Scholar 

  • Fowler CW (1981) Density dependence as related to life history strategy. Ecology 62:602–610

    Article  Google Scholar 

  • Gauthier G (1987) Brood territories in buffleheads: determinants and correlates of territory size. Can J Zool 65:1402–1410

    Article  Google Scholar 

  • Gunnarsson G, Elmberg J, Sjöberg K, Pöysä H, Nummi P (2004) Why are there so many empty lakes? Food limits survival of mallard ducklings. Can J Zool 82:1698–1703

    Article  Google Scholar 

  • Gunnarsson G, Elmberg J, Sjöberg K, Pöysä H, Nummi P (2006) Experimental evidence for density-dependent survival in mallard (Anas platyrhynchos) ducklings. Oecologia 149:203–213

    Article  PubMed  Google Scholar 

  • Gunnarsson G, Elmberg J, Pöysä H, Nummi P, Sjöberg K, Dessborn L, Arzel C (2013) Density dependence in breeding ducks: a review of the evidence. Eur J Wildl Res 59:305–321

    Article  Google Scholar 

  • Guthery FS, Shaw JH (2013) Density dependence: applications in wildlife management. J Wildl Manage 77:33–38

    Article  Google Scholar 

  • Håland A (1983) Home range use and spacing in mallard Anas platyrhynchos broods. Ornis Scand 14:24–35

    Article  Google Scholar 

  • Hario M, Rintala J (2006) Fledgling production and population trends in Finnish common eiders (Somateria mollissima mollissima) — evidence for density dependence. Can J Zool 84:1038–1046

    Article  Google Scholar 

  • Herrando-Pérez S, Delean S, Brook BW, Bradshaw CJA (2012) Strength of density feedback in census data increases from slow to fast life histories. Ecol Evol 2:1922–1934

    Article  PubMed Central  PubMed  Google Scholar 

  • Hoekman ST, Mills LC, Howerter DW, Devries JH, Ball IJ (2002) Sensitivity analyses of the life cycle of midcontinent mallards. J Wildl Manage 66:883–900

    Article  Google Scholar 

  • Holopainen S, Nummi P, Pöysä H (2014) Breeding in the stable boreal landscape: lake habitat variability drives brood production in the teal. Freshw Biol 59:2621–2631

  • Hyvönen T, Nummi P (2008) Habitat dynamics of beaver Castor canadensis at two spatial scales. Wildl Biol 14:302–308

    Article  Google Scholar 

  • Johnson DH, Grier JW (1988) Determinants of breeding distributions of ducks. Wildl Mon 100:1–37

    Google Scholar 

  • Kaminski RM, Gluesing EA (1987) Density- and habitat-related recruitment in mallards. J Wildl Manage 51:141–148

    Article  Google Scholar 

  • Knape J, de Valpine P (2012) Are patterns of density dependence in the global population dynamics database driven by uncertainty about population abundance? Ecol Lett 15:17–23

    Article  PubMed  Google Scholar 

  • Koskimies P, Pöysä H (1991) Waterfowl point count. In: Koskimies P, Väisänen RA (eds) Monitoring bird populations: a manual of methods applied in Finland. Zoological Museum, Finnish Museum of Natural History, University of Helsinki, Helsinki, pp 41–44

    Google Scholar 

  • Krüger O, Chakarov N, Nielsen JT, Looft V, Grünkorn T, Struwe-Juhl B, Møller AP (2012) Population regulation by habitat heterogeneity or individual adjustment? J Anim Ecol 81:330–340

    Article  PubMed  Google Scholar 

  • Lawrence JD, Gramacy RB, Thomas L, Buckland ST (2013) The importance of prior choice in model selection: a density dependence example. Meth Ecol Evol 4:25–33

    Article  Google Scholar 

  • Lindström Å, Enemar A, Andersson G, Proschwitz T, Nyholm EI (2005) Density-dependent reproductive output in relation to a drastically varying food supply: getting the density measure right. Oikos 110:155–163

    Article  Google Scholar 

  • Looman J, Campbell JB (1960) Adaptation of Sorensen’s K (1948) for estimating unit affinities in prairie vegetation. Ecology 41:409–416

    Article  Google Scholar 

  • Mauser DM, Jarvis RL, Gilmer DS (1994) Movements and habitat use of mallard broods in northeastern California. J Wildl Manage 58:88–94

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, vol 2. Chapman and Hall, London

    Book  Google Scholar 

  • Murkin HR, Abbott PG, Kadlec JA (1983) A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshw Invert Biol 2:99–106

    Article  Google Scholar 

  • Murray DL, Anderson MG, Steury TD (2010) Temporal shift in density dependence among North American breeding duck populations. Ecology 91:571–581

    Article  PubMed  Google Scholar 

  • Nudds TD (1983) Niche dynamics and organization of waterfowl guilds in variable environments. Ecology 64:319–330

    Article  Google Scholar 

  • Nudds TD, Bowlby JN (1984) Predator prey size relationships in North-American dabbling ducks. Can J Zool 62:2002–2008

    Article  Google Scholar 

  • Nummi P, Hahtola A (2008) The beaver as an ecosystem engineer facilitates teal breeding. Ecography 31:519–524

    Article  Google Scholar 

  • Nummi P, Holopainen S (2014) Whole-community facilitation by beaver: ecosystem engineer increases waterbird diversity. Aquat Conserv Online. doi:10.1002/aqc.2437

    Google Scholar 

  • Nummi P, Pöysä H (1993) Habitat associations of ducks during different phases of the breeding season. Ecography 16:319–328

    Article  Google Scholar 

  • Nummi P, Pöysä H (1995) Habitat use by different-aged duck broods and juvenile ducks. Wildl Biol 1:181–187

    Google Scholar 

  • Nummi P, Pöysä H (1997) Population and community level responses in Anas-species to patch disturbance caused by an ecosystem engineer the beaver. Ecography 20:580–584

    Article  Google Scholar 

  • Nummi P, Saari L (2003) Density-dependent decline of breeding success in an introduced increasing mute swan population. J Avian Biol 34:105–111

    Article  Google Scholar 

  • Nummi P, Sjöberg K, Pöysä H, Elmberg J (2000) Individual foraging behaviour indicates resource limitation: an experiment with mallard ducklings. Can J Zool 78:1891–1895

    Article  Google Scholar 

  • Nummi P, Väänänen V-M, Rask M, Nyberg K, Taskinen K (2012) Competitive effects of fish in structurally simple habitats: perch, invertebrates, and goldeneye in small boreal lakes. Aquat Sci 74:343–350

    Article  Google Scholar 

  • Paasivaara A, Pöysä H (2007) Survival of common goldeneye Bucephala clangula ducklings in relation to weather, timing of breeding, brood size, and female condition. J Avian Biol 38:144–152

    Article  Google Scholar 

  • Paasivaara A, Pöysä H (2008) Habitat patch occupancy in the common goldeneye (Bucephala clangula) at different stages of the breeding cycle: implications to ecological processes in a patchy environment. Can J Zool 86:744–755

    Article  Google Scholar 

  • Patterson JH (1979) Can ducks be managed by regulation? Experiences in Canada. Transactions North American wildlife and natural resources conference 44:130–139

    Google Scholar 

  • Péron G, Nicolai CA, Koons DN (2012) Demographic response to perturbations: the role of compensatory density dependence in a North American duck under variable harvest regulations and changing habitat. J Anim Ecol 81:960–969

    Article  PubMed  Google Scholar 

  • Pirkola MK, Högmander J (1974) Sorsapoikueiden iänmääritys. English summary: the age determination of duck broods in the field. Suomen Riista 25:50–55

    Google Scholar 

  • Pöysä H, Pöysä S (2002) Nest-site limitation and density dependence of reproductive output in the common goldeneye Bucephala clangula: implications for the management of cavity-nesting birds. J Appl Ecol 39:502–510

    Article  Google Scholar 

  • Pöysä H, Elmberg J, Gunnarsson G, Nummi P, Sjöberg K (2004) Ecological basis of sustainable harvesting: is the prevailing paradigm of compensatory mortality still valid? Oikos 104:612–615

    Article  Google Scholar 

  • Pöysä H, Rintala J, Lehikoinen A, Väisänen RA (2013) The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. Eur J Wildl Res 59:245–256

    Article  Google Scholar 

  • Previtali MA, Lima M, Meserve PL, Kelt DA, Gutierréz JR (2009) Population dynamics of two sympatric rodents in a variable environment: rainfall, resource availability, and predation. Ecology 90:1996–2006

    Article  PubMed  Google Scholar 

  • Prokop P, Trnka R, Trnka A (2009) First videotaped infanticide in the common pochard Aythya ferina. Biologia 64:1016–1017

    Article  CAS  Google Scholar 

  • R Development Core Team (2013) R: A language and environment for statistical computing R. Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://wwwR-projectorg/. Accessed Apr 2013

  • Raveling DG, Heitmeyer ME (1989) Relationships of population size and recruitment of pintails to habitat conditions and harvest. J Wildl Manage 53:1088–1103

    Article  Google Scholar 

  • SPSS Inc (2009) PASW statistics for windows version 180

  • Sæther B-E, Engen S (2002) Pattern of variation in avian population growth rates. Philos Trans R Soc Lond 357:1185–1195

    Article  Google Scholar 

  • Sæther B-E, Engen S, Matthysen E (2002) Demographic characteristics and population dynamical patterns of solitary birds. Science 295:2070–2073

    Article  PubMed  Google Scholar 

  • Sæther B-E, Lillegård M, Grøtan V, Drever MC, Engen S, Nudds TD, Podruzny KM (2008) Geographical gradients in the population dynamics of North American prairie ducks. J Anim Ecol 77:869–882

    Article  PubMed  Google Scholar 

  • Savard J-PL (1987) Causes and functions of brood amalgamation in Barrow’s goldeneye and bufflehead. Can J Zool 65:1548–1553

    Article  Google Scholar 

  • Savard J-PL (1988) Winter, spring and summer territoriality in barrow’s goldeneye: characteristics and benefits. Ornis Scand 19:119–128

    Article  Google Scholar 

  • Scrucca L (2012) Dispmod: dispersion models R package version 11. http://CRANR-projectorg/package=dispmod. Accessed Feb 2013

  • Sergio F, Blas J, Forero MG, Donazar JA, Hiraldo F (2007) Sequential settlement and site dependence in a migratory raptor. Behav Ecol 18:811–821. doi:10.1093/beheco/arm052

    Article  Google Scholar 

  • Shimada T, Kuwabara K, Yamakoshi S, Shichi T (2002) A case of infanticide in the spot-billed duck in circumstances of high breeding density. J Ethol 20:87–88. doi:10.1007/s10164-002-0058-7

    Article  Google Scholar 

  • Sibly RM, Barker D, Denham MC, Hone J, Pagel M (2005) On the regulation of populations of mammals, birds, fish, and insects. Science 309:607–610

    Article  CAS  PubMed  Google Scholar 

  • Sjöberg K, Pöysä H, Elmberg J, Nummi P (2000) Response of Mallard ducklings to variation in habitat quality: an experiment of food limitation. Ecology 81:329–335

    Article  Google Scholar 

  • Southwood TRE (1977) Habitat, the templet for ecological strategies? J Anim Ecol 46:337–365

    Article  Google Scholar 

  • Suhonen S, Nummi P, Pöysä H (2011) Long term stability of habitats and their use by ducks in boreal lakes. Boreal Env Res B 16:71–80

    Google Scholar 

  • Vickery WL, Nudds TD (1984) Detection of density-dependent effects in annual duck censuses. Ecology 65:96–104

    Article  Google Scholar 

  • Viljugrein H, Stenseth NC, Smith GW, Steinbakk GH (2005) Density dependence in North American ducks. Ecology 86:245–254

    Article  Google Scholar 

  • Williams DA (1982) Extra-binomial variation in logistic linear models. Appl Stat 31:144–148

    Article  Google Scholar 

  • Wolda H (1981) Similarity indices sample size and diversity. Oecologia 50:296–302

    Article  Google Scholar 

  • Ziebarth NL, Abbott KC, Ives AR (2010) Weak population regulation in ecological time series. Ecol Lett 13:21–31

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgments

We are grateful for the many field workers who conducted waterfowl surveys and invertebrate trappings at Evo during the 20-year study. We are also much obliged to Hannu Rita for logistic regression mentoring. Comments by two anonymous referees greatly improved the paper. A grant from the Jenny and Antti Wihuri Foundation to SH is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Holopainen.

Additional information

Communicated by Scott McWilliams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nummi, P., Holopainen, S., Rintala, J. et al. Mechanisms of density dependence in ducks: importance of space and per capita food. Oecologia 177, 679–688 (2015). https://doi.org/10.1007/s00442-014-3133-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3133-1

Keywords

Navigation