Skip to main content

Advertisement

Log in

Responses of high-elevation herbaceous plant assemblages to low glacial CO2 concentrations revealed by fossil marmot (Marmota) teeth

  • Physiological ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy—fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)—which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (\(\Delta\)) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in \(\Delta\) aligned most closely with the onset of the late Pleistocene bipolar temperature “seesaw” rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alstad KP, Welker JM, Williams S, Trlica MJ (1999) Carbon and water relations of Salix monticola in response to winter browsing and changes in surface water hydrology: an isotopic study using δ13C and δ18O. Oecologia 120:375–385. doi:10.1007/s004420050870

    Article  Google Scholar 

  • Ambrose S, Norr L (1993) Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert J, Grupe G (eds) Prehistoric human bone: archaeology at the molecular level. Springer, Berlin, pp 1–37

    Chapter  Google Scholar 

  • Armitage KB (1979) Food selectivity by yellow-bellied marmots. J Mammal 60:628–629. doi:10.2307/1380107

    Article  Google Scholar 

  • Asmerom Y, Polyak VJ, Burns SJ (2010) Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts. Nature 3:114–117. doi:10.1038/NGEO754

    CAS  Google Scholar 

  • Balasse M, Bocherens H, Mariotti A, Ambrose SH (2001) Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: an experimental study of dentine collagen of cattle (Bos taurus). J Archaeol Sci 28:235–245. doi:10.1006/jasc.1999.0535

    Article  Google Scholar 

  • Barrell J (1969) Flora of the Gunnison Basin: Gunnison, Saguache and Hinsdale Counties, Colorado; a study in the distribution of plants. National Land Institute, Rockford

    Google Scholar 

  • Beerling DJ (1996) 13C discrimination by fossil leaves during the late-glacial climate oscillation 12–10 ka BP: measurements and physiological controls. Oecologia 108:29–37. doi:10.1007/BF00333211

    Article  Google Scholar 

  • Beerling DJ, Mattey DP, Chaloner WG (1993) Shifts in the δ13C composition of Salix herbacea L. leaves in response to spatial and temporal gradients of atmospheric CO2 concentration. Proc R Soc B 253:53–60. doi:10.1098/rspb.1993.0081

    Article  Google Scholar 

  • Blaauw M (2010) Methods and code for “classical” age-modelling of radiocarbon sequences. Quat Geochronol 5:512–518. doi:10.1016/j.quageo.2010.01.002

    Article  Google Scholar 

  • Briles CE, Whitlock C, Meltzer DJ (2011) Last glacial–interglacial environments in the southern Rocky Mountains, USA and implications for Younger Dryas-age human occupation. Quat Res 77:96–103. doi:10.1016/j.yqres.2011.10.002

    Article  Google Scholar 

  • Brooks JR, Flanagan LB, Buchmann N, Ehleringer JR (1997) Carbon isotope composition of boreal plants: functional grouping of life forms. Oecologia 110:301–311. doi:10.1007/s004420050163

    Article  Google Scholar 

  • Brugger KA (2010) Climate in the southern Sawatch Range and Elk Mountains, Colorado, USA., during the Last Glacial Maximum: inferences using a simple degree-day model. Arct Antarct Alp Res 42:164–178. doi:10.1657/1938-4246-42.2.164

    Article  Google Scholar 

  • Bryant JD, Froelich PN, Showers WJ, Genna BJ (1996) A tale of two quarries: biologic and taphonomic signatures in the oxygen isotope composition of tooth enamel phosphate from modern and Miocene equids. Palaios 11:397–408. http://www.jstor.org/stable/3515249

  • Coltrain JB, Harris JM, Cerling TE, Ehleringer JR, Dearing M, Ward JK, Allen J (2004) Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeogr Palaeoclimatol Palaeoecol 205:199–219. doi:10.1016/j.palaeo.2003.12.008

    Article  Google Scholar 

  • Connin SL, Betancourt J, Quade J (1998) Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quat Res 50:179–193. doi:10.1006/qres.1998.1986

    Article  CAS  Google Scholar 

  • Emslie SD (1986) Late Pleistocene vertebrates from Gunnison County, Colorado. J Paleontol 60:170–176. http://www.jstor.org/stable/1305104

  • Emslie SD (2002) Fossil shrews (Insectivora: Soricidae) from the late Pleistocene of Colorado. Southwest Nat 47:62–69. http://www.jstor.org/stable/3672802

  • Feranec RS, Hadly EA, Paytan A (2010) Isotopes reveal limited effects of middle Pleistocene climate change on the ecology of mid-sized mammals. Quat Int 217:43–52. doi:10.1016/j.quaint.2009.07.018

    Article  Google Scholar 

  • Franz-Odendaal TA, Lee-Thorp JA, Chinsamy A (2003) Insights from stable light isotopes on enamel defects and weaning in Pliocene herbivores. J Biosci 28:765–773. doi:10.1007/BF02708437

    Article  PubMed  Google Scholar 

  • Frase BA, Armitage KB (1989) Yellow-bellied marmots are generalist herbivores. Ethol Ecol Evol 1:353–366. doi:10.1080/08927014.1989.9525505

    Article  Google Scholar 

  • Frase BA, Hoffmann RS (1980) Marmota flaviventris. Mamm Species 135:1–8. http://www.science.smith.edu/msi/pdf/i0076-3519-135-01-0001.pdf

  • Gerhart LM, Ward JK (2010) Plant responses to low [CO2] of the past. New Phytol 188:674–695. doi:10.1111/j.1469-8137.2010.03441.x

    Article  PubMed  Google Scholar 

  • Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc Natl Acad Sci USA 97:7894–7898. doi:10.1073/pnas.97.14.7894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hobson K, Sease J (1998) Stable isotope analysis of tooth annuli reveal temporal dietary records: an example using Stellar sea lions. Mar Mamm Sci 14:116–129. doi:10.1111/j.1748-7692.1998.tb00694.x

    Article  Google Scholar 

  • Jenkins SG, Partridge ST, Stephenson TR, Farley SD, Robbins CT (2001) Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 129:336–341. doi:10.1007/S004420100755

    Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling TE, Dearing M (eds) A history of atmospheric CO2 and its effects of plants, animals, and ecosystems. Springer, New York, pp 83–113

    Chapter  Google Scholar 

  • Knoff A, Hohn A, Macko S (2008) Ontogenetic diet changes in bottlenose dolphins (Tursiops truncatus) reflected through stable isotopes. Mar Mamm Sci 24:128–137. doi:10.1111/j.1748-7692.2007.00174.x

    Article  Google Scholar 

  • Körner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high altitude. Oecologia 74:623–632. http://www.jstor.org/stable/4218519

  • Lemieux-Dudon B, Blayo E, Petit J-R, Waelbroeck C, Svensson A, Ritz C, Barnola J-M, Narcisi BM, Parrenin F (2010) Consistent dating for Antarctic and Greenland ice cores. Quat Sci Rev 29:8–20. doi:10.1016/j.quascirev.2009.11.010

    Article  Google Scholar 

  • Leuenberger M, Siegenthaler U, Langway CC (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488–490. doi:10.1038/357488a0

    Article  CAS  Google Scholar 

  • Macias-Fauria M, Johnson EA (2013) Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc Natl Acad Sci USA 110:8117–8122. doi:10.1073/pnas.1221278110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall JD, Zhang J (1994) Carbon isotope discrimination and water-use efficiency in native plants of the North-Central Rockies. Ecology 75:1887–1895. doi:10.2307/1941593

    Article  Google Scholar 

  • McLean BS, Emslie SD (2012) Stable isotopes reflect the ecological stability of two high-elevation mammals from the late Quaternary of Colorado. Quat Res 77:408–417. doi:10.1016/j.yqres.2012.02.001

    Article  CAS  Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114. doi:10.1126/science.291.5501.112

    Article  CAS  PubMed  Google Scholar 

  • Munson PJ (1984) Teeth of juvenile woodchucks as seasonal indicators on archaeological sites. J Archaeol Sci 11:395–403. doi:10.1016/0305-4403(84)90020-7

    Article  Google Scholar 

  • Nash DT (1987) Archaeological investigations at Haystack Cave, central Colorado. Curr Res Pleistocene 4:114–116

    Google Scholar 

  • Newsome SD, Koch PL, Etnier MA, Aurioles-Gamboa D (2006) Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar Mamm Sci 22:556–572. doi:10.1111/j.1748-7692.2006.00043.x

    Article  Google Scholar 

  • Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S, Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466:482–487. doi:10.1038/nature09210

    Article  CAS  PubMed  Google Scholar 

  • Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M, Dearing MD, Roeder BL, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J Archaeol Sci 32:1459–1470. doi:10.1016/j.jas.2005.03.015

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fernandez Calzado R, Ghosn D, Holten JI, Kanka R, Kazakis G, Kollar J, Larsson P, Moiseev P, Moiseev D, Molau U, Mesa JM, Nagy L, Pelino G, Puscas M, Rossi G, Stanisci A, Syverhuset AO, Theurillat J-P, Tomaselli M, Unterluggauer P, Villar L, Vittoz P, Grabherr G (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355. doi:10.1126/science.1219033

    Article  CAS  PubMed  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436. doi:10.1038/20859

    Article  CAS  Google Scholar 

  • Prentice IC, Harrison SP (2009) Ecosystem effects of CO2 concentration: evidence from past climates. Clim Past 5:297–307. doi:10.5194/cp-5-297-2009

    Article  Google Scholar 

  • PRISM Climate Group, Oregon State University (2013) http://prism.nacse.org/normals/. Accessed 10 October 2013

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rinaldi C (1999) A record of hibernation in the incisor teeth of recent and fossil marmots (Marmota flaviventris). In: Mayhall J (ed) Proceedings of the 11th international symposium of dental morphology. Oulu University Press, Oulu, pp 112–119

    Google Scholar 

  • Sage RF (2002) Variation in the kcat of rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Biol 53:609–620. doi:10.1093/jexbot/53.369.609

    CAS  Google Scholar 

  • Sage RF, Coleman JR (2001) Effects of low atmospheric CO2 on plants: more than a thing of the past. Trends Plant Sci 6:18–24. doi:10.1016/S1360-1385(00)01813-6

    Article  CAS  PubMed  Google Scholar 

  • Sare DTJ, Millar JS, Longstaffe FJ (2005) Tracing dietary protein in red-backed voles (Clethrionomys gapperi) using stable isotopes of nitrogen and carbon. Can J Zool 83:717–725. doi:10.1139/Z05-064

    Article  CAS  Google Scholar 

  • Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Kohler P, Joos F, Stocker TF, Leuenberger M, Fischer H (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714. doi:10.1126/science.1217161

    Article  CAS  PubMed  Google Scholar 

  • Scott LJ (1981) Palynological investigations of three sites at Curecanti National Recreation Area, Colorado. In: Euler RT, Stiger MA (eds) 1978 test excavations at five archaeological sites in Curecanti National Recreation Area, Intermountain Colorado. Midwest Archeological Center, Lincoln, pp 88–111

    Google Scholar 

  • Shakun JD, Clark PU, He F, Marcott SA, Mix AC, Liu Z, Otto-Bliesner B, Schmittner A, Bard E (2012) Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484:49–54. doi:10.1038/nature10915

    Article  CAS  PubMed  Google Scholar 

  • Skibiel AL, Hood WR (2013) Milk composition in a hibernating rodent, the Columbian ground squirrel (Urocitellus columbianus). J Mammal 94:146–154. doi:10.1644/1-MAMM-A-078.1

    Article  Google Scholar 

  • Street-Perrott FA, Huang Y, Perrott RA, Eglinton G, Barker P, Khelifa LB, Harkness DD, Olago DO (1997) Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–1426. doi:10.1126/science.278.5342.1422

    Article  PubMed  Google Scholar 

  • Terashima I, Masuzawa T, Ohba H, Yokoi Y (1995) Is photosynthesis suppressed at higher elevations due to low CO2 pressure? Ecology 76:2663–2668. http://www.jstor.org/stable/2265838

  • Van de Water PK, Leavitt SW, Betancourt JL (1994) Trends in stomatal density and 13C/12C ratios of Pinus flexilis needles during last glacial–interglacial cycle. Science 264:239–243. doi:10.1126/science.264.5156.239

    Article  CAS  PubMed  Google Scholar 

  • Ward JK, Strain BR (1997) Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant Cell Environ 20:254–260. doi:10.1046/j.1365-3040.1997.d01-59.x

    Article  Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Change Biol 5:857–867. doi:10.1046/j.1365-2486.1999.00270.x

    Article  Google Scholar 

  • Ward JK, Harris JM, Cerling TE, Wiedenhoeft A, Lott MJ, Dearing M-D, Coltrain JB, Ehleringer JR (2005) Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California. Proc Natl Acad Sci USA 102:690–694. doi:10.1073/pnas.0408315102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward JK, Myers DA, Thomas RB (2008) Physiological and growth responses of C3 and C4 plants to reduced temperature when grown at low CO2 of the last ice age. J Integr Plant Biol 50:1388–1395. doi:10.1111/j.1744-7909.2008.00753.x

    Article  CAS  PubMed  Google Scholar 

  • Welker JM (2000) Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies. Hydrol Process 14:1449–1464. doi:10.1002/1099-1085(20000615)14:8<1449:AID-HYP993>3.0.CO;2-7

    Article  Google Scholar 

  • Wright LE, Schwarcz HP (1998) Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol 106:1–18. doi:10.1002/(SICI)1096-8644(199807)106:3<411:AID-AJPA16>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • Wright LE, Schwarcz HP (1999) Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: infant diets at Kaminaljuyu. J Archaeol Sci 26:1159–1170. doi:10.1006/jasc.1998.0351

    Article  Google Scholar 

  • Zeileis A, Leisch F, Hornik K, Kleiber C (2002) Strucchange: an R package for testing for structural change in linear regression models. J Stat Softw 7:1–38. http://www.jstatsoft.org/v07/i02/paper

Download references

Acknowledgments

This research was funded by the National Science Foundation (grant EAR-0819678), Rocky Mountain Biological Laboratory (Dr Lee R. G. Snyder Fellowship), National Speleological Society (Research Grant), and University of New Mexico Biology Department (Joseph Gaudin Scholarship). Carolyn Landes (Bureau of Land Management, Anasazi Heritage Center) provided access to Haystack Cave samples. Personnel from Quest Archaeological Research Program (Southern Methodist University) and the University of North Carolina Wilmington assisted in excavation at Cement Creek Cave. Valentina Ferretti illustrated the marmot maxilla shown in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan S. McLean.

Additional information

Communicated by David R. Bowling.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLean, B.S., Ward, J.K., Polito, M.J. et al. Responses of high-elevation herbaceous plant assemblages to low glacial CO2 concentrations revealed by fossil marmot (Marmota) teeth. Oecologia 175, 1117–1127 (2014). https://doi.org/10.1007/s00442-014-2982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2982-y

Keywords

Navigation