Skip to main content
Log in

Determinants of change in subtropical tree diameter growth with ontogenetic stage

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R 2 = 0.95) in RGR than the model for saplings (R 2 = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez-Clare S, Kitajima K (2007) Physical defence traits enhance seedling survival of Neotropical tree species. Funct Ecol 21:1044–1054

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ (2000) The influence of topography on tree growth, mortality, and recruitment in a tropical montane forest. Biotropica 32:378–384

    Article  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants—an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Carreno-Rocabado G, Pena-Claros M, Bongers F, Alarcon A, Licona JC, Poorter L (2012) Effects of disturbance intensity on species and functional diversity in a tropical forest. J Ecol 100:1453–1463

    Article  Google Scholar 

  • Chalmandrier L et al (2013) A family of null models to distinguish between environmental filtering and biotic interactions in functional diversity patterns. J Veg Sci 24:853–864

    Article  PubMed Central  PubMed  Google Scholar 

  • Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45:90–96

    Google Scholar 

  • Clark DA et al (2001) Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol Appl 11:371–384

    Article  Google Scholar 

  • Comita LS, Engelbrecht BMJ (2009) Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:2755–2765

    Article  PubMed  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality-rates of 205 Neotropical tree and shrub species and the impact of a severe drought. Ecol Monogr 65:419–439

    Article  Google Scholar 

  • Cornelissen JHC et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Schwilk DW, Ackerly DD (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87:1465–1471

    Article  PubMed  Google Scholar 

  • Delagrange S, Messier C, Lechowicz MJ, Dizengremel P (2004) Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiol 24:775–784

    Article  PubMed  Google Scholar 

  • Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  • Enquist BJ, Kerkhoff AJ, Stark SC, Swenson NG, McCarthy MC, Price CA (2007) A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Nature 449:218–222

    Article  CAS  PubMed  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C-3 plants. Oecologia 78:9–19

    Article  Google Scholar 

  • Falster DS, Westoby M (2005) Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J Ecol 93:521–535

    Article  Google Scholar 

  • Fisher JB et al (2013) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902

    Article  PubMed  Google Scholar 

  • Garciaoliva F, Maass JM, Galicia L (1995) Rainstorm analysis and rainfall erosivity of a seasonal tropical region with a strong cyclonic influence on the Pacific Coast of Mexico. J Appl Meteorol 34:2491–2498

    Article  Google Scholar 

  • Grime JP (1977) Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Gromping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha Neotropical forest plot. J Ecol 89:947–959

    Article  Google Scholar 

  • Hérault B et al (2011) Functional traits shape ontogenetic growth trajectories of rain forest tree species. J Ecol 99:1431–1440

    Article  Google Scholar 

  • Kohyama T (1987) Significance of architecture and allometry in saplings. Funct Ecol 1:399–404

    Article  Google Scholar 

  • Kohyama T (1991) A functional-model describing sapling growth under a tropical forest canopy. Funct Ecol 5:83–90

    Article  Google Scholar 

  • Kohyama T, Grubb PJ (1994) Belowground and aboveground allometries of shade-tolerant seedlings in a Japanese warm temperate rain-forest. Funct Ecol 8:229–236

    Article  Google Scholar 

  • Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580–582

    Article  CAS  PubMed  Google Scholar 

  • Laliberte E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305

    Article  PubMed  Google Scholar 

  • Lambers H, Chapin SF III, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Legendre P et al (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Li L et al (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos 118:495–502

    Article  Google Scholar 

  • Lin GJ, Stralberg D, Gong GQ, Huang ZL, Ye WH, Wu LF (2013) Separating the effects of environment and space on tree species distribution: from population to community. PLoS One 8:e56171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loh FCW, Grabosky JC, Bassuk NL (2002) Using the SPAD 502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. Horttechnology 12:682–686

    CAS  Google Scholar 

  • Lusk CH, Reich PB, Montgomery RA, Ackerly DD, Cavender-Bares J (2008) Why are evergreen leaves so contrary about shade? Trends Ecol Evol 23:299–303

    Article  PubMed  Google Scholar 

  • Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401

    Article  Google Scholar 

  • Martíne-Vilalta J, Pinol J, Beven K (2002) A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol Model 155:127–147

    Article  Google Scholar 

  • Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 98:1462–1475

    Article  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118

    Article  Google Scholar 

  • McMahon SM, Metcalf CJE, Woodall CW (2011) High-dimensional coexistence of temperate tree species: functional traits, demographic rates, life-history stages, and their physical context. PLoS One 6:e16253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moles AT, Ackerly DD, Webb CO, Tweddle JC, Dickie JB, Westoby M (2005) A brief history of seed size. Science 307:576–580

    Article  CAS  PubMed  Google Scholar 

  • Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS (2004) Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. J Ecol 92:609–623

    Article  Google Scholar 

  • Pasquini SC, Santiago LS (2012) Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia 168:311–319

    Article  CAS  PubMed  Google Scholar 

  • Pei NC et al (2011) Exploring tree-habitat associations in a Chinese subtropical forest plot using a molecular phylogeny generated from DNA barcode loci. PLoS One 6:e21273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Poorter L et al (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio G, Zhu JM, Lynch JP (2003) A critical test of the two prevailing theories of plant response to nutrient availability. Am J Bot 90:143–152

    Article  CAS  PubMed  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889

    Article  CAS  Google Scholar 

  • Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in relation to growth form. Funct Ecol 21:19–27

    Article  Google Scholar 

  • Santiago LS et al (2004a) Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543–550

    Article  CAS  PubMed  Google Scholar 

  • Santiago LS, Kitajima K, Wright SJ, Mulkey SS (2004b) Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495–502

    Article  PubMed  Google Scholar 

  • Santiago LS, Schuur EAG, Silvera K (2005) Nutrient cycling and plant–soil feedbacks along a precipitation gradient in lowland Panama. J Trop Ecol 21:461–470

    Article  Google Scholar 

  • Santiago LS et al (2012) Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. J Ecol 100:309–316

    Article  CAS  Google Scholar 

  • Shen Y et al (2013) Forest dynamics of a subtropical monsoon forest in Dinghushan, China: recruitment, mortality and the pace of community change. J Trop Ecol 29:131–145

    Article  Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661

    Article  Google Scholar 

  • Sterck F, Markesteijn L, Schieving F, Poorter L (2011) Functional traits determine trade-offs and niches in a tropical forest community. P Natl Acad Sci USA 108:20627–20632

    Article  CAS  Google Scholar 

  • Tsujino R, Takafumi H, Agetsuma N, Yumoto T (2006) Variation in tree growth, mortality and recruitment among topographic positions in a warm temperate forest. J Veg Sci 17:281–290

    Article  Google Scholar 

  • Villeger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C et al (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton

    Google Scholar 

  • Webb CO, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. J Ecol 88:464–478

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright SJ et al (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

  • Wright SJ et al (2011) Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92:1616–1625

    Article  PubMed  Google Scholar 

  • Ye WH et al (2008) Community structure of a 20 ha lower subtropical evergreen broadleaved forest plot in Dinghushan, China (in Chinese with English abstract). J Plant Ecol 32:274–286

Download references

Acknowledgments

We thank Prof. Bai-lian Li for establishing collaborations between the University of California Riverside and the South China Botanical Garden; numerous individuals in South China Botanical Garden who contributed to the field survey of Dinghushan plot; and the Santiago Lab for comments that improved the manuscript. The study was funded by the National Natural Science Foundation of China (31370446, 31100312), the Knowledge Innovation Project of The Chinese Academy of Sciences (KSCX2-EW-Z), the Foreign Exchange Program National Founder (31011120470), the Chinese Forest Biodiversity Monitoring Network and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhui Ye.

Additional information

Communicated by Ylo Niinemets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Santiago, L.S., Shen, H. et al. Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia 175, 1315–1324 (2014). https://doi.org/10.1007/s00442-014-2981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2981-z

Keywords

Navigation